101.1 Paper精读:DeepSeek_R1_基于强化学习的LLM推理能力增强

0. 承前

如果想更加全面清晰地了解金融资产组合模型进化论的体系架构,可参考:
0. 金融资产组合模型进化全图鉴

1. 文章主旨

本文介绍了DeepSeek团队在大语言模型推理能力增强方面的开创性工作。首次证明了纯强化学习方法(DeepSeek-R1-Zero)可以显著提升模型的推理能力,无需传统的监督微调过程。通过多阶段训练方法,团队开发的DeepSeek-R1模型在AIME 2024等多个推理基准测试中达到或超过了OpenAI-o1-1217的性能。此外,研究还成功将高级推理能力蒸馏到更小的模型中,使1.5B到70B等不同规模的模型都获得了显著的性能提升。

2. 内容概述

2.1 研究背景

近年来,大语言模型经历了快速迭代和演进,但在推理能力方面仍面临以下挑战:

  • 后训练(Post-training)成为完整训练流程的重要组成部分
  • 现有方法在推理任务的准确性提升、社会价值对齐等方面仍需改进
  • OpenAI的o1系列模型通过增加推理过程长度提升性能,但其方法细节尚未公开
  • 现有的进程奖励模型(PRM)、强化学习和搜索算法等方法未能达到o1系列的性能水平

请添加图片描述

2.2 DeepSeek-R1-Zero:纯强化学习方法

DeepSeek-R1-Zero采用纯强化学习方法,直接从基础模型开始训练:

  • 采用GRPO算法,无需与策略模型同等规模的评论家模型
  • 使用基于规则的奖励系统,包括准确性奖励和格式奖励
  • 在AIME 2024测试中达到71.0%的准确率,使用多数投票可达86.7%
  • 自然形成了反思、验证等高级推理行为

请添加图片描述

2.3 DeepSeek-R1:多阶段训练方法

详细介绍了四个训练阶段:

  1. 冷启动阶段:
  • 使用少量高质量CoT数据进行微调
  • 收集数千条长链思维(CoT)数据进行初始微调
  • 设计可读性模式,包括推理过程和总结部分
  • 通过人工标注优化数据质量
  1. 面向推理的强化学习:
  • 专注于编码、数学、科学等有明确解答的推理任务
  • 引入语言一致性奖励,解决语言混合问题
  • 结合准确性和语言一致性奖励进行训练
  1. 拒绝采样和监督微调:
  • 使用RL检查点进行拒绝采样,生成高质量数据
  • 收集约60万条推理相关训练样本
  • 收集约20万条非推理任务训练样本
  • 对基础模型进行两轮微调
  1. 全场景强化学习:
  • 同时优化推理能力和人类偏好对齐
  • 对推理数据使用规则奖励
  • 对通用数据使用奖励模型
  • 重点关注最终总结的实用性和相关性

2.4 知识蒸馏

介绍了将DeepSeek-R1知识蒸馏到小型模型的方法:

  • 使用80万训练样本直接微调开源模型
  • 基于Qwen和Llama系列模型进行实验
  • 支持1.5B到70B不同规模的模型
  • 蒸馏效果优于直接在小模型上进行强化学习

实验结果表现:

模型规模AIME 2024MATH-500GPQA DiamondLiveCodeBench
1.5B28.9%52.7%83.9%33.8%
7B55.5%83.3%92.8%49.1%
32B72.6%94.3%94.3%62.1%

3. 框架比喻解析

DeepSeek-R1的训练过程可以比喻为一个学生的学习成长:

  • DeepSeek-R1-Zero像是天才学生,通过自主探索掌握解题技巧
  • 冷启动阶段像是接受基础教育,建立正确的学习方法
  • 强化学习阶段像是大量练习和自我提升
  • 知识蒸馏则像是优秀学生帮助其他同学提升

4. 实验与结果

DeepSeek-R1在多个基准测试中展现出卓越性能:

4.1 推理任务

  • AIME 2024:79.8% (Pass@1)
  • MATH-500:97.3%
  • GPQA Diamond:71.5%
  • LiveCodeBench:65.9%
  • Codeforces:2029 Rating (超过96.3%的人类参与者)

4.2 知识测试

  • MMLU:90.8%
  • MMLU-Pro:84.0%
  • GPQA Diamond:71.5%
  • SimpleQA:30.1%

4.3 通用能力

  • AlpacaEval 2.0:87.6% (长度控制胜率)
  • ArenaHard:92.3% (胜率)
  • 长文本理解任务表现优异

5. 结论与展望

5.1 主要贡献

  • 证明了纯强化学习可以提升LLM推理能力
  • 开发了有效的多阶段训练流程
  • 实现了成功的知识蒸馏
  • 首次证明纯强化学习可显著提升LLM推理能力
  • 开发了结合冷启动和强化学习的多阶段训练方法
  • 实现了高效的知识蒸馏,使小型模型获得强大推理能力
  • 开源了多个规模的蒸馏模型,推动社区发展

5.2 未来展望

  • 提升通用能力
  • 解决语言混合问题
  • 优化提示工程
  • 改进软件工程任务性能
  • 增强函数调用、多轮对话等通用能力
  • 解决非中英语言的混合问题
  • 优化提示工程,降低对提示的敏感性
  • 改进软件工程任务的训练效率和性能
  • 探索更多场景的应用可能

6. 参考文献

DeepSeek_R1_基于强化学习的LLM推理能力增强

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI量金术师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值