目录
0. 承前
本文通过通俗易懂的方式介绍PPO(Proximal Policy Optimization)和GPPO(Generalized Proximal Policy Optimization)的共同点与差异点,帮助读者更好地理解这两种强化学习算法。
如果想更加全面清晰地了解金融资产组合模型进化论的体系架构,可参考:
0. 金融资产组合模型进化全图鉴
1. 基本概念解析
1.1 PPO算法
- 定义:一种基于信任区域的策略优化算法,通过限制策略更新步长实现稳定训练
- 目的:实现稳定的策略更新,避免过大的策略变化影响收敛性
- 特点:使用截断的目标函数来限制策略更新幅度,注重实践中的高效性和稳定性
1.2 GPPO算法
- 定义:PPO的泛化版本,引入更灵活的约束机制以适应多样化的优化需求
- 目的:提供更通用的策略优化框架,支持复杂约束和多目标优化
- 特点:支持多样化的约束形式和优化目标,强调理论完备性和灵活性
2. 共同点分析
2.1 理论基础
- 都基于策略梯度,使用梯度上升优化策略,关注策略改进的单调性并重视样本效率
- 都采用信任区域思想,限制策略更新幅度以保证训练稳定性并避免过大的策略变化
- 都强调保守更新,使用近似策略比率控制策略偏离程度,平衡探索与利用的需求