100.15 AI量化面试题:PPO与GPPO策略优化算法的异同点

0. 承前

本文通过通俗易懂的方式介绍PPO(Proximal Policy Optimization)和GPPO(Generalized Proximal Policy Optimization)的共同点与差异点,帮助读者更好地理解这两种强化学习算法。

如果想更加全面清晰地了解金融资产组合模型进化论的体系架构,可参考:
0. 金融资产组合模型进化全图鉴

1. 基本概念解析

1.1 PPO算法

  • 定义:一种基于信任区域的策略优化算法,通过限制策略更新步长实现稳定训练
  • 目的:实现稳定的策略更新,避免过大的策略变化影响收敛性
  • 特点:使用截断的目标函数来限制策略更新幅度,注重实践中的高效性和稳定性

1.2 GPPO算法

  • 定义:PPO的泛化版本,引入更灵活的约束机制以适应多样化的优化需求
  • 目的:提供更通用的策略优化框架,支持复杂约束和多目标优化
  • 特点:支持多样化的约束形式和优化目标,强调理论完备性和灵活性

2. 共同点分析

2.1 理论基础

  1. 都基于策略梯度,使用梯度上升优化策略,关注策略改进的单调性并重视样本效率
  2. 都采用信任区域思想,限制策略更新幅度以保证训练稳定性并避免过大的策略变化
  3. 都强调保守更新,使用近似策略比率控制策略偏离程度,平衡探索与利用的需求
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI量金术师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值