python xgboost输出变量重要性_xgboost输出特征重要性排名和权重值

本文介绍了如何在XGBoost中查看特征重要性排名和权重值,强调了这一指标在评估模型合理性中的关键作用。通过分析结构分数的增益,可以计算特征的重要性。同时,提供了相关博客链接作为参考,并提到了特征工程系列文章,涵盖从文本数据处理到深度学习的多个方面。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原标题:xgboost输出特征重要性排名和权重值

向AI转型的程序员都关注了这个号👇👇👇

机器学习AI算法工程 公众号:datayx

在机器学习实践中,我们要经常用到xgboost框架去训练数据,然后用训练得到的模型再去预测其他未知的数据的标签。

在判断训练得到的模型是否合理时,一个很重要的步骤就是查看xgboost模型的特征重要性排序。如果观察得到模型的排名前几的特征都不符合我们正常的思维,那么模型很可能是不稳定或者有问题的。在训练得到模型文件及特征映射文件后,可以通过下面一段代码查看特征排名、特征名称、特征权重值

基本思想

根据结构分数的增益情况计算出来选择哪个特征的哪个分割点,某个特征的重要性,就是它在所有树中出现的次数之和。

参考链接

https://blog.csdn.net/q383700092/article/details/53698760

https://blog.csdn.net/oppo62258801/article/details/81212854

阅读过本文的人还看了以下:

分享《深度学习入门:基于Python的理论与实现》高清中文版PDF+源代码

《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码

《深度学习之pytorch》pdf+附书源码

李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材

笔记、代码清晰易懂!李航《统计学习方法》最新资源全套!

《神经网络与深度学习》最新2018版中英PDF+源码

将机器学习模型部署为REST API

FashionAI服装属性标签图像识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值