python除法while_Python基于辗转相除法求解最大公约数的方法示例

本文介绍了一种使用Python实现的辗转相除法来计算两个整数的最大公约数(GCD)的方法。该算法通过不断取余数直至余数为零的过程找到最大公约数。文中提供了详细的代码示例及运行结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文实例讲述了Python基于辗转相除法求解最大公约数的方法。分享给大家供大家参考,具体如下:

之前总结过一次高德纳TAOCP中的最大公约数求解,其实课后题中的算法修改要求实现的是辗转相除法求解最大公约数。

这个题目我最初的理解理解错了,自然也没有做出标准答案。现在按照标准答案的解答写一下相应的代码实现:

# -*- coding:utf-8 -*-

#! python2

def MaxCommDivisor(m,n):

while m * n != 0:

m = m % n

if m == 0:

return n

else:

n = n % m

if n == 0:

return m

print(MaxCommDivisor(55,120))

程序的执行结果:

交换一下两个数字的位置,代码如下:

# -*- coding:utf-8 -*-

#! python2

def MaxCommDivisor(m,n):

while m * n != 0:

m = m % n

if m == 0:

return n

else:

n = n % m

if n == 0:

return m

print(MaxCommDivisor(120,55))

程序的执行结果:

题目提示中提到了会降低效率,通过上面的代码来看,效率的损失应该是在除法以及判断上。在此,把之前算法的代码拿过来对比一下:

def CommDevisor(m,n):

r = m % n

while r != 0:

m = n

n = r

r = m % n

return n

print(CommDevisor(120,25))

运行结果:

新算法在循环中,多了一个除法以及比较操作。其实,比较的效率还是不错的,但是除法的运算会导致效率的降低。

PS:这里再为大家推荐几款计算工具供大家进一步参考借鉴:

希望本文所述对大家Python程序设计有所帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值