python ar_四种AR的实现方式

本文介绍了Python实现AR的四种方法,包括使用OpenCV和C++、Python库、AR框架BAR4Py以及结合SLAM算法。详细讲解了每种方法的思路、工具和资源,如OpenCV的Marker检测、PyGame与PyOpenGL结合、ARToolkit的使用等,并提供了相关项目的链接和效果展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原标题:四种AR的实现方式

我们在实现AR效果时,为了大大减少我们的工程量,我们可以借助一些主流的AR SDK,比如EasyAR ,Vuforia,太虚AR等等,当然,作为AR技术的狂热爱好者,我们的追求远远不止于此。所以了,我今天给大家介绍了几种“底层”实现AR的方式。

Opencv和C++ 实现

大概思路是OpenCV实现对Marker的识别和定位,然后通过OpenGL将虚拟物体叠加到摄像头图像下,实现增强现实。具体思路是:

使用SIFT算法进行识别(特征点的提取并用特征向量对特征点描述,接着当前视图的特征向量与目标对象的特征向量进行匹配)

根据识别出来的原目标和帧图像匹配关系得到变化矩阵,来显示三维物体(使用OpenGL来绘制),实现跟踪。

对于基于标记的AR的Opencv实现,我们常常用到Marker:

黑色边框中是编码信息,白色为1,黑色为0,将每一行作为一个字,那么每个字有5bits。其中,1、3、5位为校验位,2、4位为信息位。接下来用Opencv实现,其具体思路为:

对输入图像帧进行标记检测,灰度化,找到图像中轮廓,检测和解码标记,

估计标记的三维姿态,这里包括提前对摄像机进行相机标定,获取相机内参数和失真系数,根据这个计算出标记的旋转矩阵和平移矩阵,

由相机内参数和标记的旋转矩阵和平移矩阵,用OpenGL进行渲染三维物体。

项目地址:https://github

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值