ios yymodel 将字典转数组模型_gensim word2vec词向量模型快速加载

本文介绍了一种针对大型预训练Word2Vec模型的高效加载和使用方法,通过构建有限词汇表并转换词向量存储格式,实现了词向量的快速检索。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 背景:

在使用别人已经训练好的word2vec模型时,如Chinese Word Vectors 中文词向量,

Embedding/Chinese-Word-Vectors​github.com
570490f2686f813870ac9e4f2c111d9e.png

常常这种模型很大(上述链接中的Skip-Gram with Negative Sampling (SGNS)Mixed-large 综合行、Word + Ngram列下载解压后的文件为3.43G),将他们加载到内存中再求词向量显然会很费时,求model.most_similar时同样需要搜索整个内存空间.

在stackoverflow中,关于训练好的的word2vec模型加速加载、使用回答链接如下:

How to speed up Gensim Word2vec model load time?​stackoverflow.com
045e0c347f985aa5a67589675338b610.png

本文尝试解决的问题是:

如何使用已训练的word2vec模型,快速求有限词汇表的词向量。

2. 方法:

构建有限词汇表,转存模型中的词向量为csv或其他格式,使用时载入为字典实现快速读取。

3. 代码:

import 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值