我们先了解下InnoDB引擎表的一些关键特征:InnoDB引擎表是基于B+树的索引组织表(IOT)。
每个表都需要有一个聚集索引(clustered index);
所有的行记录都存储在B+tree的叶子节点(leaf pages of the tree);
基于聚集索引的增、删、改、查的效率相对是最高的;
如果我们定义了主键(PRIMARY KEY),那么InnoDB会选择其作为聚集索引;
如果没有显式定义主键,则InnoDB会选择第一个不包含有NULL值的唯一索引作为主键索引;
如果也没有这样的唯一索引,则InnoDB会选择内置6字节长的ROWID作为隐含的聚集索引(ROWID随着行记录的写入而主键递增,这个ROWID不像ORACLE的ROWID那样可引用,是隐含的)。
综上总结,如果InnoDB表的数据写入顺序能和B+树索引的叶子节点顺序一致的话,这时候存取效率是最高的,也就是下面这几种情况的存取效率最高:
使用自增列(INT/BIGINT类型)做主键,这时候写入顺序是自增的,和B+数叶子节点分裂顺序一致;
如果该表不指定自增列做主键,同时也没有可以被选为主键的唯一索引(上面的条件),这时候InnoDB会选择内置的ROWID作为主键,写入顺序和ROWID增长顺序一致;
如果一个InnoDB表又没有显示主键,又有可以被选择为主键的唯一索引,但该唯一索引可能不是递增关系时(例如字符串、UUID、多字段联合唯一索引的情况),该表的存取效率就会比较差。
聚集索索 和 非聚集索引
每个InnoDB表都有一个称为聚集索引的特殊索引,其中存储了行的数据。通常,聚集索引与主键同义。
mysql的innodb表,就是索引组织表,表中的所有数据行都放在索引上,这就约定了数据是严格按照顺序存放的,所以不管插入的先后顺序,它在那个物理上的那个位置与插入的先后顺序无关。
聚集索引:叶子节点存的是整行数据,直接通过这个聚集索引的键值找到某行
聚集索引:数据的物理存放顺序与索引顺序是一致的,即:只要索引是相邻的,那么对应的数据一定也是相邻地存放在磁盘上的。
聚集索引:数据行和相邻的键值紧凑地存储在一起,因为无法同时把数据行存放在两个不同的地方,所以一个表只能有一个聚集索引。
非聚集索引,叶子节点存的是字段的值,通过这个非聚集索引的键值找到对应的聚集索引字段的值,再通过聚集索引键值找到表的某行,类似oracle通过键值找到rowid,再通过rowid找到行
mysql的innodb表,其聚集索引相当于整张表,而整张表也是聚集索引。默认通过主键聚集数据,如果没有定义主键,则选择第一个非空的唯一索引,如果没有非空唯一索引,则选择rowid来作为聚集索引
mysql的innodb表,因为整张表也是聚集索引,select出来的结果是顺序排序的,比如主键字段的数据插入顺序可以是5、3、4、2、1,查询时不带order by得出的结果也是按1、2、3、4、5排序
通俗理解
聚集索引 :类似新华字典正文内容本身就是一种按照一定规则排列的目录
非聚集索引:这种目录纯粹是目录,正文纯粹是正文的排序方式
每个表只能有一个聚集索引,因为目录只能按照一种方法进行排序 。
================
基于主键索引和普通索引(二级索引)的查询有什么区别?
主键索引的叶子节点存的是整行数据。在 InnoDB 里,主键索引也被称为聚集索引(clustered index)。
非主键索引的叶子节点内容是主键的值。在 InnoDB 里,非主键索引也被称为二级索引(secondary index)。
如果语句是 select * from T where ID=500,即 主键查询方式,则只需要搜索 ID 这棵 B+树 ;
如果语句是 select * from T where k=5, 即 普通索引查询方式,则需要先搜索 k 索引树,得到 ID的值为 500,再到 ID 索引树搜索一次。这个过程称为回表。B+树为了维护索引有序性,在插入新值的时候需要做必要的维护。以上面为例,
如果插入新的行 ID 值为 700,则只只需要在 R5 的记录后面插入一个新记录。
如果新插入的 ID值为 400,就相对麻烦了,需要逻辑上挪动后面的数据,空出位置。