
秩才是矩阵真正的“大小”。看看这个矩阵:
秩
- 秩
矩阵只有一个主元。秩
矩阵只有一个主元列,也只有一个主元行,矩阵每列/行都是第一列/行的倍数。对于矩阵,列的性质总能决定一些行的性质,这是了不起的事实。
- 秩
矩阵可以表示为
,反之能够表示为
的矩阵也是秩
注意:列矢量乘行矢量的结果是矩阵;点乘是行矢量乘列矢量,点乘的结果是一个数。另:我们讨论的矢量都是列矢量,如本例中的矩阵。
;当我们需要列矢量乘行矢量时,我们要把列矢量转置:
。
- 所有矩阵都可以表示成秩
矩阵的和。秩为
的矩阵可以表示为
个秩
矩阵的和。
接下来我们讲讲上面提到的第三点:秩为
将
随后,我们自然而然的得到
最后,值得一提的是: