目录
基于yolo11的CrowdHuman密集行人目标检测
1.数据阶段
1.1 数据集准备
在拥挤/遮挡场景下,使用crowdhuman数据集重训练后的yolo11,效果表现较好。crowdhuman数据集标签如下,有Head BBox、Visible BBox、Full BBox。如下图显示:
数据集介绍:CrowdHuman数据集是旷世发布的用于行人检测的数据集,图片数据大多来自于google搜索。CrowdHuman数据集数据量比较大,训练集15000张,测试集5000张,验证集4370张。训练集和验证集中共有470K个实例,约每张图片包含23个人,同时存在各种各样的遮挡。每个人类实例都用头部边界框、人类可见区域边界框和人体全身边界框注释。其中测试数据集没有公开标注。
1.2 数据集下载
为4个zip压缩包文件(不需要没有标注的测试集)、2个odgt文件,所有文件放置在ori_datasets目录下【CrowdHuman dataset下载链接(官网):https://www.crowdhuman.org/download.html链接获取】,网页分布如下:
上述链接失效时,可参考:https://aistudio.baidu.com/datasetdetail/89331,网页分布如下:
1.3 压缩包解压
将CrowdHuman_train01.zip、CrowdHuman_train02.zip、CrowdHuman_train03.zip、CrowdHuman_val.zip等压缩包都解压生成Images目录
解压命令为:unzip CrowdHuman_train01.zip,后续压缩包依次执行,最终ori_datasets目录分布如下:
查看文件内容,命令为:ls Images/*.jpg | wc -l,输出为:19370
1.4 数据集结构组织
【需要进入工程项目yolov11_det里面】运行指令【