点击上方蓝字“霍格沃茨的小角落”一起玩耍
今天开始小角落要跟大家分享最近学习的Python数据分析的基础知识啦,小角落准备分成Numpy基础,Pandas入门,Pandas应用实例以及绘图及可视化几个部分来分享知识。今天先让我们来学习Numpy基础(上篇)以一首好听的歌曲来开始美好的学习之旅!一、Numpy 基础(上篇)

Numpy 的核心特征之一是N-维数组对象——ndarray,她是Python中一个快速,灵活的大型数据集容器。但是一个ndarray是一个多维同类数据容器奥!就是这个数据集中的数值只能是一种类型,不可以混合多种类型~下面让我们来看一下怎么生成一个ndarray吧!

可以看到二维数组是由多个一维数组组成,写的时候要记得加一个中括号。
(3)同样生成一个三维数组,可以看做是由多个二维数组构成:
写完数组后我们怎么看写的对不对呢?我们想生成一个三维数组可生成的是三维的吗?严谨的我们总觉得有点儿担心······
不怕, numpy给我们提供了三个数组基本属性函数!
(1) ndim(维度),
(2)shape(维度和列数)
(3)size(数组中有多少个元素)。
这个时候有的小伙伴是不是要说这样生成数组是不是太麻烦了,我还要自己一个一个敲数字,有没有什么快速生成数组的方法呢?答案是:有的!
(1)np.arange ()左闭右开区间
(2)np.linspace()左闭右闭区间
上边生成数组快到时很快可是维度列数跟我们需要的不一样,我们有时想要维度更高的数组,这时候该怎么办呢?
1.2.4 reshape函数



(1)np.hstack()
(2)np.concatenate((),axis=1)
(1)np.vstack()
(2)np.concatenate((),axis=0)

(1)np.hsplit()
(2)np.split( , , axis=1)
(1)np.vsplit()
(2)np.split( , , axis=0)
关于Python数据分析的上篇就分享到这里啦,下篇将会分享numpy数组的计算以及一些常用函数操作奥!
如有小伙伴想获取源代码扫码后台回复“numpy源代码”即可。
