python两个一维数组合并_Python数据分析——Numpy基础(上篇)

本文介绍了Numpy的基础知识,包括ndarray的生成、属性以及快速创建数组的方法如`np.arange()`和`np.linspace()`。还讨论了如何通过`np.hstack()`、`np.vstack()`以及`np.split()`等函数进行一维和二维数组的合并与拆分。下篇将深入探讨numpy数组的计算和常用函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击上方蓝字“霍格沃茨的小角落”一起玩耍

  今天开始小角落要跟大家分享最近学习的Python数据分析的基础知识啦,小角落准备分成Numpy基础,Pandas入门,Pandas应用实例以及绘图及可视化几个部分来分享知识。今天先让我们来学习Numpy基础(上篇)以一首好听的歌曲来开始美好的学习之旅!

一、Numpy 基础(上篇)

25acb8523df55172ff7104f0b2dfba6c.png1.1 最最重要的ndarray

  Numpy 的核心特征之一是N-维数组对象——ndarray,她是Python中一个快速,灵活的大型数据集容器。但是一个ndarray是一个多维同类数据容器奥!就是这个数据集中的数值只能是一种类型,不可以混合多种类型~下面让我们来看一下怎么生成一个ndarray吧!

b5b818f91515a40b2ffeba58a4af8b6f.png1.2 生成ndarray1.2.1 最简单的方法是使用array函数 np.array()(1)生成一个一维数组:

72eec51cdfb1ea019e8736fbd24d35ee.png

(2)生成一个二维数组:

47165fec6d72614cdcaec8c784576e00.png

可以看到二维数组是由多个一维数组组成,写的时候要记得加一个中括号。

(3)同样生成一个三维数组,可以看做是由多个二维数组构成:

ecd0b1243096f6cd95abbb13d1d2c15e.png

写完数组后我们怎么看写的对不对呢?我们想生成一个三维数组可生成的是三维的吗?严谨的我们总觉得有点儿担心······

不怕, numpy给我们提供了三个数组基本属性函数!

d25c3b7b15d43a5834deda7040027c2d.png

1.2.2 数组属性

(1) ndim(维度),

 (2)shape(维度和列数) 

 (3)size(数组中有多少个元素)。

c580c02b56bb5718d93482539f92bfd1.png

这个时候有的小伙伴是不是要说这样生成数组是不是太麻烦了,我还要自己一个一个敲数字,有没有什么快速生成数组的方法呢?答案是:有的!

c1f18cd55c049aaccb1761ae87096e60.png

1.2.3两个常用函数

(1)np.arange ()左闭右开区间

(2)np.linspace()左闭右闭区间

7f0a6289452dccd28b4dcbf182a87723.png

0c92622154416d18a1763480d453512f.png

db7a906ec6382225edffab49f5e2891a.png

上边生成数组快到时很快可是维度列数跟我们需要的不一样,我们有时想要维度更高的数组,这时候该怎么办呢?

1.2.4 reshape函数

4b90af8440318cda1b36f146f4da55cc.png

最后再告诉大家几个创建新数组的函数吧!1.2.5 其他创建新数组函数(1)创建元素都为1的数组np.ones

46dc386d82772f3f368dba16a4c74716.png

(2)创建元素都为0的数组np.zeros

e1eb96b26e59aaec1f4188d2266a0099.png

(3)创建对角线位置元素是1,其余位置元素是0的数组np.eye

723a186cc435c0db73c092e2a6560302.png

(4)创建指定元素数值的数组np.full

08521bfd66b27f61c1ceb2702acb9e66.png

1d2a892255f85067e0b21c5fbd4a5c27.png1.3 一维数组元素的选取与修改数组名称[要选择的元素]

ce417968eaa727e2b6cc89034287c9b0.png

85f149379913b344e98f1d425ae74070.png1.4 二维数组的选取与修改数组名称[要选择的元素]

c8c864e191630f4ca4d2ad35299c6e27.png

e36f82fdea4122d04fb20e7f6a9ca390.png

看了上边这些选取第几行第几列的数值就请各位小伙伴自己动动手操作一下吧!cbdafe6edae70e3ea2781929a2ba1c71.png1.5三维数组的选取与修改数组名称[要选择的元素]

5fecd9a82a19ba0cd2712b1277e4481c.png

a5b266b3c23074da4e4e76e7c3432dc9.png

ec5ee409007532f26ad5638834b50c97.png

b70c5044e6abe970ebeef777c6dd3d8d.png1.6numpy内数组合并1.6.1水平组合

(1)np.hstack()

(2)np.concatenate((),axis=1)

07adb1a301c8840201820bdee9f99e5a.png

1.6.2 垂直组合

(1)np.vstack()

(2)np.concatenate((),axis=0)

22f84ea397d06839ffd5247e2cf9f0fc.png

ab104166fa317a1eac2d8997f4ad5da2.png1.7数组分割1.7.1水平分割

(1)np.hsplit()

(2)np.split( , , axis=1)

9771ccd4fbca9d360cba0afab9fbac04.png

1.7.2垂直分割

(1)np.vsplit()

(2)np.split( , , axis=0)

720c0aa72be336f679e140f4d7b8b34e.png

1.7.3强制分割np.array_split(,axis=0或者=1)

2b6bc23fbd75f1df2d82a05c5fda9934.png

关于Python数据分析的上篇就分享到这里啦,下篇将会分享numpy数组的计算以及一些常用函数操作奥!

如有小伙伴想获取源代码扫码后台回复“numpy源代码”即可。

337b7f86379df6ec0bf1f7ac1549f202.png

d209b90bf160000d9866c431cfa16a13.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值