ssd网络结构_目标检测算法SSD结构详解

本文深入解析SSD(Single Shot Multibox Detector)目标检测算法,对比One-Stage与Two-Stage算法,详细介绍了SSD模型结构,包括基础网络VGG16及后续特征提取检测网络,并通过实例展示SSD如何处理不同尺度物体的检测,为理解SSD的工作原理提供了清晰的视角。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上期我们一起学习了Faster RCNN的损失函数以及如何进行模型训练的相关知识,如下:
Faster RCNN的损失函数以及模型训练流程

本文主要学习:

  • One-Stage / Two-Stage
  • SSD模型结构

我们知道之前学的RCNN系列需要选取候选框和分类回归两步操作,称为Two-Stage类算法。今天我们学习一种新的目标检测算法SSD(Single Shot MultiBox Detector),该算法属于One-Stage类算法范畴。首先我们先看一下One-StageTwo-Stage类算法到底有哪些区别。

One-Stage / Two-Stage

  • Two-Stage:Faster RCNNTwo-Stage算法将检测问题划分为两个阶段,首先产生候选区域(Region Proposals),然后再对候选区域进行分类和位置回归。
    特点:错误率低,漏识别率低,但是速度较慢,不太能满足实时监测场景。

  • One-Stage:SSD YOLOOne-Stage算法不需要Region Proposals阶段,可以直接产生物体的类别概率和位置坐标值,经过单次检测即可直接得到最终的检测结果。
    特点:有着更快的检测速度。

如下图,我们也可以从下图中看到One-StageTwo-Stage算法的性能差异:cd966ecfb76fdf90f7619d7ab5e0eb87.png
可以看到在VOC2007测试集上One-Stage算法有着更快的检测速度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值