❝上期我们一起学习了
❞Faster RCNN
的损失函数以及如何进行模型训练的相关知识,如下:
Faster RCNN的损失函数以及模型训练流程
本文主要学习:
- One-Stage / Two-Stage
- SSD模型结构
我们知道之前学的RCNN
系列需要选取候选框和分类回归两步操作,称为Two-Stage
类算法。今天我们学习一种新的目标检测算法SSD
(Single Shot MultiBox Detector
),该算法属于One-Stage
类算法范畴。首先我们先看一下One-Stage
和Two-Stage
类算法到底有哪些区别。
One-Stage / Two-Stage
Two-Stage:Faster RCNN
Two-Stage
算法将检测问题划分为两个阶段,首先产生候选区域(Region Proposals
),然后再对候选区域进行分类和位置回归。
特点:错误率低,漏识别率低,但是速度较慢,不太能满足实时监测场景。One-Stage:SSD YOLO
One-Stage
算法不需要Region Proposals
阶段,可以直接产生物体的类别概率和位置坐标值,经过单次检测即可直接得到最终的检测结果。
特点:有着更快的检测速度。
如下图,我们也可以从下图中看到One-Stage
和Two-Stage
算法的性能差异:
可以看到在VOC2007
测试集上One-Stage
算法有着更快的检测速度。