样本方差的期望_样本方差究竟为什么要除n-1

“样本方差要除n-1”,这句话似乎一直纠结在学统计的人心里。那么,样本方差究竟为什么要除n-1呢?

有的解释说因为要满足均值,就只剩下了n-1个可能;有的人说因为样本均值用掉了一个自由度,所以只能除n-1。

下面,我们就从概率论的角度来推导一下为什么是n-1。


我们之所以要计算样本方差,是因为希望可以通过样本方差来表示总体方差,即希望样本方差的期望等于总体方差。不使用期望解释的话,就是希望如果不断从总体中抽取无数个样本组,最终所有样本组的方差的均值就是总体方差。

我们先使用除n-1的公式计算样本方差的期望,此时样本方差的公式为:

7199e840b3bafc16df7434cde0a813c1.png

因此,样本方差的期望为:

71c178a39f37bc635d4912b1c4a8f11e.png

因为要使用样本方差估计总体,所以我们总体均值将总体均值引入到样本方差的期望中:

295dde8524b2c366731063841117bb32.png

因为期望具有如下性质(其中C为常数):

67ce0a014d11c3156dc7678b49651a6b.png

故上式的样本方差可以继续化简为:

68743d2eb826d4b14293372fd17ee213.png

我们已知总体方差的公式为:

b1ad533a35fed49364f1941e79d07a2d.png

又知均值的方差为(其中D(X)表示X的方差):

67672d6950e4975acf6cb3bd9cac808c.png

故上式的样本方差还可以继续化简为:

1cece173bdc15b50dd568d2e7cf279fe.png

所以当样本方差除n-1时,样本方差的期望才等于总体方差,在概率论中称之为无偏估计。


还可以用如上方法计算当样本方差除n时样本方差的期望,最终得到如下结果:

e0d040fdf066ef12734fb3bd9d10d62d.png

此时样本方差的期望不等于总体方差,不是总体方差的无偏估计。


作者:长行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值