python经典算法实例_经典算法之树状数组:轻松搞懂树状数组(附python完整代码)...

本文详细介绍树状数组(Binary Indexed Tree/Fenwick Tree)的工作原理及应用,包括如何利用树状数组高效处理数组的前缀和查询及单点更新操作,通过具体实例展示了树状数组的构建与操作流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

树状数组可以解决什么样的问题:

这里通过一个简单的题目展开介绍,先输入一个长度为n的数组,如[1,2,3,5,10,8],然后我们有如下两种操作:

输入一个数m,输出数组中下标1~m的前缀和

对某个指定下标的数进行值的修改

多次执行上述两种操作,如何操作呢?

方法1:

对于一个的数组,如果需要求1~m的前缀和我们可以将其从下标1开始对m个数进行求和,对于n次操作,时间复杂度是O(n^2),对于值的修改,我们可以直接通过下标找到要修改的数,n次操作时间复杂度为O(n),在数组n值比较大的时候,求前缀和(即前k个数的和)的效率显得低了

方法2:

那么有人提出了一种优化的方式:

初始我们用一个数组A的保存每个位置的初始值,然后用一个

辅助数组B

存放的是下标为i的时候A数组的前i个的和(前缀和),那么当我们需要查询m个数的前缀和的时候只要直接使用下标对B数组进行查询即可,n次查询,时间复杂度为O(n),而此时,对于单点更新值的维护消耗,由原来的O(n)变成了O(n^2),因为每一次与更新单点值都会对后面的已经计算好的B数组前缀和的值造成影响,需要不断更新B数组的值,n次更新维护的消耗自然就变成了O(n^2),更新的效率变得低下

方法3:

树状数组

(Binary Indexed Tree(B.I.T), Fenwick Tree)

,就是本文介绍的方法

那么是否有一种方法可以让查询和更新的时间复杂度都小一些呢,至少可以令人接受,这里将介绍树状数组如何处理

前缀和查询

单点更新

的问题,对于n次操作,时间复杂度都为O(nlogn)

018e8bf464434177a35cd359185ef10b

图1-数状数组C与元素组A对应关系

如图1,对于一个长度为n的数组,A数组存放的是数组的初始值,引入一个辅助数组C(我们通过C数组建立树状数组)

C1 = A1

C2 = C1 + A2 = A1 + A2

C3 = A3

C4 = C2 + C3 + A4 = A1 + A2 + A3 + A4

C5 = A5

C6 = C5 + A6 = A5 + A6

C7 = A7

C8 = C4 + C6 + C7 + A8 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8

我们称C[i]的值为下标为i的数所管辖的数的和,C[8]存放的就是被编号8所管辖的那些数的和(有8个),而下标为i的数所管辖的元素的个数则为2^k个(k为i的二进制的末尾0的个数)举两个例子查询下标m==8和m==5所管辖的数的和

C[i]数学表达式:C[i] = A[i - 2^k+1] + A[i - 2^k+2] + ... + A[i](k为i的二进制的末尾0的个数)

8 = 1000(

8的二进制

),末尾3个0,故k == 3,所管辖的个数为2^3 == 8,C8是8个数的和

5 = 0101(

5的二进制

),末尾没有0,故k == 0,所管辖的个数为2^0 == 1,C5是一个数的和(它本身A5)

树状数组-求和

而对于输入的数m,我们要求编号为m的数的前缀和A1~Am(

这里假设树状数组已经建立,即C1~C8的值已经求出,别着急,在本文的最下方会做出建立树状数组的过程讲解,因为现在是在求前缀和,就假设C数组已经可用了吧

)举两个例子m==7和m==6(sum(i)表示求编号为i的前缀和)

m==7 sum(7) = C7 + C6 + C4

那么我们是怎么得到编号7是由哪几个C[i]求和得到呢(C4, C6, C7怎么得到的),这里有介绍一种巧妙的方法:

对于查询的m,将它转换成二进制后,不断对末尾的1的位置进行-1的操作,直到全部为0停止

7的二进制为0111(C7得到),那么先对0111的末尾1的位置-1,得到0110 == 6(C6得到),再对0110末尾1位置-1,得到0100 == 4(C4得到),最后对0100末尾1位置-1后得到0000(结束信号),计算停止,至此C7,C6,C4全部得到,求和后就是m == 7时它的前缀和

m==6 sum(6) = C6 + C4

m == 6时也是一样,先转成2进制等于0110,经过两次变换后为0100(C4)和0000(结束信号),那么求和后同样也得到了预计的结果

这里要介绍一个高效的方法,lowbit(int m),这是一个函数,它的作用是求出m的二进制表示的末尾1的位置,对于要查询m的前缀和,m = m - lowbit(m)代表不断对二进制末尾1进行-1操作,不断执行直到m == 0结束,就能得到

前缀和

哪几个Cm

构成,十分巧妙,

lowbit也是树状数组的核心

python代码

def lowbit(m):

return m &(-m)

关于m&(-m)很多童鞋可能感到困惑,那么就不得不提及一下负数在计算机内存中的存储形式,负数在计算机中是以补码的形式存储的,如13的二进制表示为1101,那么-13的二进制而将13二进制按位取反,然后末尾+1,即0010 + 0001 = 0011,那么1101 & 0011== 0001,很显然得到m == 13二进制末尾1的位置是2的0次方位,将13 - 0001 == 12,再对12执行lowbit操作,1100 & 0100 == 0100,也很轻易得到了m == 12时二进制末尾1的位置是2的2次方位,将12 - 0100 == 8,再对8执行lowbit操作,0100 & 1100 == 0100,得到m == 8时二进制位是2的2次方位,8 - 0100 == 0(结束操作),通过循环得到的13,12,8,则sum(13) == C13 + C12 + C8

求前缀和的代码

def sum(m):

ans = 0

while m > 0 :

ans += c[m]

m = m - lowbit(m)

return ans

对于n次前缀和的查询,时间复杂度为O(nlogn)

树状数组-单点更新

对于输入编号为x的值,要求为它的值附加一个value值即A[i]=A[i]+value,我们把图再一次拿下来

006b04085727490cbe163a99c3f395b1

图2-树状数组C与初始数组A对应关系

假设x==2,value==5,那么我们先找到A[2]的位置,通过观察我们得知,如果修改了A[2]的值,那么管辖A[2]的C[2],C[4],C[8]的前缀和都要加上value(所有的祖先节点),那么和查询类似,我们如何得到C2的所有祖先节点呢(因为C2和A2的下标相同所以更新时查询从C[x]开始),依旧是上述的巧妙的方法,但是我们把它倒过来

对于要更新x位置的值,我们把x转换成二进制,不断对二进制最后一个1的位置+1,直到达到数组下标的最大值n结束

对于给出的例子x==2,假设数组下标上限n==8,x转换成二进制后等于0010(C2),对末尾1的位置进行+1,得到0100(C4),对末尾的1的位置进行+1,得到1000(C8),循环结束,对C2,C4,C8的前缀和都要加上value,当然不能忘记对A[2]的值+value,单点更新值过程结束

python代码实现

def update(x,value):

A[x] += value #//不能忘了对A数组进行维护

while x < n:

C[x] += value

x = x+ lowbit(x)

对于n次更新操作,时间复杂度同样为O(nlogn)

这里有一个注意事项,我们对于求前缀和与单点更新时,树状数组C是拿来直接使用的,那么问题来了,树什么时候建立好的,我怎么不知道??

事实上,对于一个输入的数组A,我们一次读取的过程,就可以想成是一个不断更新值的过程(把A1~An从0更新成我们输入的A[i]),所以一边读入A[i],一边将C[i]涉及到的祖先节点值更新,完成输入后树状数组C也就建立成功了

树状数组-python完整实现代码示例

class FenwickTree:

def __init__(self, arrayA): # 传入初始数组,构建树状数组

self.size = len(arrayA) # 保存数组大小

self.arrayA = [0 for i in range(self.size)] #保存初始数组以及变更

#树状数组初始设置为0

self.arrayC = [0 for i in range(self.size)]

for i in range(1,self.size+1):

"""

构建类的初始数组A和树状数组B

这里有一个注意事项,我们对于求前缀和与单点更新时,树状数组C是拿来直接使用的,

那么问题来了,树什么时候建立好的,我怎么不知道??

事实上,对于一个输入的数组A,我们一次读取的过程,就可以想成是一个不断更新值的过程

(把A1~An从0更新成我们输入的A[i]),所以一边读入A[i],一边将C[i]涉及到的祖先节点值更新,

完成输入后树状数组C也就建立成功了

"""

self.update(i,arrayA[i-1]) #【注意】数组从0下标开始,update方法从1开始

def lowbit(self,m):

"""

求出m的二进制表示的末尾1的位置

:return:

"""

return m & (-m)

def update(self, i, val): # 【注意】数组从0下标开始,update方法从1开始

self.arrayA[i-1] += val # 更新初始数组

while i <= self.size:

self.arrayC[i-1] += val #注意数组下标从0开始

i += self.lowbit(i)

def sum(self, i): # 求前缀和,sum方法从1开始

ans = 0

while i > 0:

ans += self.arrayC[i-1] #数组下标从1开始

i -= self.lowbit(i)

return ans

if __name__ == "__main__":

fenwickTree = FenwickTree([1,2,3,4,5,6,7,8])

print(fenwickTree.arrayA) #打印初始数组

print(fenwickTree.arrayC) #打印树状数组

print(fenwickTree.sum(4))#求arrayA前4项的和

fenwickTree.update(1,3) #arrayA第1个元素+3

print(fenwickTree.arrayA) # 打印更新数组[4,2,3,4,5,6,7,8]

print(fenwickTree.arrayC) # 打印树状数组

print(fenwickTree.sum(4))#求arrayA前4项的和

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值