应用回归分析第五版电子书_应用回归分析(第5版)

该书详细介绍了回归分析的基础知识,包括一元线性回归、多元线性回归、异常值处理、自变量选择、多重共线性及非线性回归等。内容涵盖回归模型的建立、参数估计、显著性检验、残差分析等核心概念,还探讨了含定性变量的回归模型和Logistic回归。适合初学者和进阶者学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

第1章回归分析概述

1.1变量间的统计关系

1.2回归方程与回归名称的由来

1.3回归分析的主要内容及其一般模型

1.4建立实际问题回归模型的过程

1.5回归分析应用与发展述评

思考与练习

第2章一元线性回归

2.1一元线性回归模型

2.2参数β0,β1的估计

2.3最小二乘估计的性质

2.4回归方程的显著性检验

2.5残差分析

2.6回归系数的区间估计

2.7预测和控制

2.8本章小结与评注

思考与练习

第3章多元线性回归

3.1多元线性回归模型

3.2回归参数的估计

3.3参数估计量的性质

3.4回归方程的显著性检验

3.5中心化和标准化

3.6相关阵与偏相关系数

3.7本章小结与评注

思考与练习

第4章违背基本假设的情况

4.1异方差性产生的背景和原因

4.2一元加权最小二乘估计

4.3多元加权最小二乘估计

4.4自相关性问题及其处理

4.5BOXCOX变换

4.6异常值与强影响点

4.7本章小结与评注

思考与练习

第5章自变量选择与逐步回归

5.1自变量选择对估计和预测的影响5.2所有子集回归

5.3逐步回归

5.4本章小结与评注

思考与练习

第6章多重共线性的情形及其处理

6.1多重共线性产生的背景和原因

6.2多重共线性对回归模型的影响

6.3多重共线性的诊断

6.4消除多重共线性的方法

6.5本章小结与评注

思考与练习

第7

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值