字符串解压缩c语言除哈夫曼,C语言实现压缩二例(示例代码)

本文介绍了一个简单的字符串压缩算法实现及哈夫曼编码原理与应用。通过具体实例展示了如何压缩字符串并利用哈夫曼编码进行高效数据压缩。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一 简单字符串压缩

编写一个字符串压缩程序,将字符串中连续出席的重复字母进行压缩,并输出压缩后的字符串。

压缩规则:

1、仅压缩连续重复出现的字符。比如字符串”abcbc”由于无连续重复字符,压缩后的字符串还是”abcbc”。

2、压缩字段的格式为”字符重复的次数+字符”。例如:字符串”xxxyyyyyyz”压缩后就成为”3x6yz”。

#include

#include

#include

int main()

{

char str[100] = {'\\0'};

char res[100] = {'\\0'};

scanf("%s",str);

int length = strlen(str);

int i=0, j=0, k=0;

int count = 0;

do

{

if(i < length && str[i++] == str[j])

count++;

if(str[i] != str[j])

{

if(count <= 1)

res[k++] = str[j];

else

{

if(count > 1)

{

char temp[10] = {'\\0'};

itoa(count,temp,10);

strcpy(res+k,temp);

k+=strlen(temp);

res[k++] = str[j];

}

}

j = i;

count = 0;

}

}while(i

res[k] = '\\0';

printf("The result is : %s\\n",res);

return 0;

}

运行情况:

e81fc2052ac242b78de95e9f54b33ba5.jpg

二 哈夫曼编码

哈夫曼树─即最优二叉树,带权路径长度最小的二叉树,经常应用于数据压缩。 在计算机信息处理中,

“哈夫曼编码”是一种一致性编码法(又称“熵编码法”),用于数据的无损耗压缩。这一术语是指使用一张特殊的编码表将源字符(例如某文件中的一个符号)进行编码。这张编码表的特殊之处在于,它是根据每一个源字符出现的估算概率而建立起来的(出现概率高的字符使用较短的编码,反之出现概率低的则使用较长的编码,这便使编码之后的字符串的平均期望长度降低,从而达到无损压缩数据的目的)。这种方法是由David.A.Huffman发展起来的。 例如,在英文中,e的出现概率很高,而z的出现概率则最低。当利用哈夫曼编码对一篇英文进行压缩时,e极有可能用一个位

哈弗曼编码在信息论中应用举例哈弗曼编码在信息论中应用举例

(bit)来表示,而z则可能花去25个位(不是26)。用普通的表示方法时,每个英文字母均占用一个字节(byte),即8个位。二者相比,e使用了一般编码的1/8的长度,z则使用了3倍多。若能实现对于英文中各个字母出现概率的较准确的估算,就可以大幅度提高无损压缩的比例。

//用C语言实现Huffman编码,并计算本节中块的编码

//长度(以位为单位),计算Huffman编码的压缩比。

//主程序:

#include

#include

typedef struct HfTreeNode

{

int weight; //权重

int parent; //父节点

int lchild, rchild; //两个子节点

}Struct, *HfStruct;

typedef struct{

char code[10];

int start;

}HCodeType;

void quanDCT(short(*data)[8], short(*result)[8]);//量化函数

int calWeight(short(*result), int(*Node), int(*Weight));//权重计算

void print_data_screen(short data[8][8]);//数据打印

//待编码数据

short DctData[8][8] = {

{ 1149, 38, -43, -10, 25, -83, 10, 40 },

{ -81, -3, 114, -73, -6, -2, 21, -5 },

{ 13, -11, 0, -42, 25, -3, 16, -38 },

{ 1, -61, -13, -12, 35, -23, -18, 4 },

{ 43, 12, 36, -4, 9, -21, 6, -8 },

{ 35, -11, -9, -4, 19, -28, -21, 13 },

{ -19, -7, 20, -6, 2, 2, 11, -21 },

{ -5, -13, -11, -17, -4, -1, 6, -4 } };

HfStruct create_HuffmanTree(int *WeightPoint, int n);//霍夫曼树创建函数

void HuffmanCoding(HfStruct HT, HCodeType HuffCode[], int n);//霍夫曼编码函数

void main()

{

int i, j;//循环变量

int Length;//编码节点数

int totalbits = 0;//计算编码后的总的比特数

int Node[64];//节点数组

int Weight[64];//权重数组

short QuanResult[8][8];//量化结果存储

quanDCT(DctData, QuanResult);//数据量化

printf("量化后的数据:\\n");//打印量化数据

print_data_screen(QuanResult);

Length = calWeight(*QuanResult, Node, Weight);//计算量化数据的节点与权重,并返回节点数

int *maNode = (int*)malloc(Length*sizeof(int));//按有效节点进行分配

int *maWeight = (int*)malloc(Length*sizeof(int));//按有效节点进行分配

for (i = 0; i

{

*(maNode + i) = Node[i];//拷贝有效节点

*(maWeight + i) = Weight[i];//拷贝有效权重

}

//根据权重与有效节点数创建霍夫曼树

HfStruct p = create_HuffmanTree(maWeight, Length);

//打印霍夫曼树

printf("霍夫曼树:\\n");

for (i = 0; i<2 * Length - 1; i++)

printf("父节点:%3d,左子节点:%3d,右子节点:%3d,权重:%3d\\n", p[i].parent, p[i].lchild, p[i].rchild, p[i].weight);

HCodeType code[9];

//依据霍夫曼树进行编码

HuffmanCoding(p, code, Length);//霍夫曼编码

//打印出编码结果

printf("\\n编码结果:\\n");

for (i = 0; i

{

printf("节点:%3d,权重:%3d,编码:", *(maNode + i), *(maWeight + i));

for (j = code[i].start + 1; j < Length; j++)

printf("%c", code[i].code[j]);

printf("\\n");

}

//计算编码后的总的比特数,计算压缩比

for (i = 0; i

{

j = Length - 1 - code[i].start;

totalbits = totalbits + maWeight[i] * j;

}

printf("\\n编码后的总位数为:%d,压缩比为:%4.2f\\n", totalbits, (double)(64 * 8) / totalbits);

while (1);

}

short QuanTable[8][8] = {

{ 16, 11, 10, 16, 24, 40, 51, 61 },

{ 12, 12, 14, 19, 26, 58, 60, 55 },

{ 14, 13, 16, 24, 40, 57, 69, 56 },

{ 14, 17, 22, 29, 51, 87, 80, 62 },

{ 18, 22, 37, 56, 68, 109, 103, 77 },

{ 24, 35, 55, 64, 81, 104, 113, 92 },

{ 49, 64, 78, 87, 103, 121, 120, 101 },

{ 72, 92, 95, 98, 112, 100, 103, 99 }

};//量化表

void print_data_screen(short data[8][8])//数据打印

{

int x, y;

for (x = 0; x<8; x++)

for (y = 0; y<8; y++)

{

printf("%d", data[x][y]);

if (y == 7)

{

if (x == 7)

printf("\\n\\n");

else

printf("\\n");

}

else

{

printf(",");

}

}

}

void quanDCT(short(*data)[8], short(*result)[8])//数据量化

{

int x, y;

for (x = 0; x<8; x++)

{

for (y = 0; y<8; y++)

{

*(*(result + x) + y) = (short)(double(*(*(data + x) + y)) / QuanTable[x][y] + 0.5);

}

}

}

int calWeight(short(*result), int *Node, int *Weigh)//计算权重

{

int x, y, i, find = 0;

for (x = 0; x<64; x++)

{

Node[x] = 0;

Weigh[x] = 0;

}

Node[0] = (*result);

Weigh[0] = 1;

i = 0;

for (x = 1; x<64; x++)

{

for (y = 0; y <= i; y++)

{

if (*(x + result) == Node[y])

{

Weigh[y]++;

find = 1;

break;

}

}

if (find)

{

find = 0;

continue;

}

else

{

i++;

Node[y] = *(x + result);

Weigh[y]++;

}

}

return i + 1;

}

/*

从HtStruct选出权重最小,并且没有父节点的节点

*/

int WeightMinNode(HfStruct HtStruct, int Mum)

{

int i = 0; //序号, 循环用

int min; //最小权重序号

int MinWeight; //最小权重

//首先选择一个节点,用于比较出最小的一个

while (HtStruct[i].parent != -1)

i++;

MinWeight = HtStruct[i].weight;

min = i;

//选出weight最小且parent为-1的元素,并将其序号赋给min

for (; i

{

if (HtStruct[i].weight

{

MinWeight = HtStruct[i].weight;

min = i;

}

}

//选出weight最小的元素后,将其parent置1,使得下一次比较时将其排除在外。

HtStruct[min].parent = 1;

return min;

}

/*

从HtStruct数组的前k个元素中选出weight最小且parent为-1的两个,分别将其序号保存在min1和min2中

*/

void ChoseMinium2(HfStruct HtStruct, int Mum, int *min1, int *min2)

{

*min1 = WeightMinNode(HtStruct, Mum);

*min2 = WeightMinNode(HtStruct, Mum);

}

/*

根据给定的n个权值构造一棵赫夫曼树

*/

HfStruct create_HuffmanTree(int *WeightPoint, int n)

{

//一棵有n个叶子节点的赫夫曼树共有2n-1个节点

int AllNodeNum = 2 * n - 1;

HfStruct HT = (HfStruct)malloc(AllNodeNum*sizeof(Struct));

int i;

//叶子节点初始化,将传入的数据加载到叶子节点上

for (i = 0; i

{

HT[i].parent = -1;

HT[i].lchild = -1;

HT[i].rchild = -1;

HT[i].weight = *WeightPoint;

WeightPoint++;

}

//HT[n],HT[n+1]...HT[2n-2]中存放的是中间构造出的每棵二叉树的根节点

for (; i

{

HT[i].parent = -1; //父节点初始化

HT[i].lchild = -1; //左子节点初始化

HT[i].rchild = -1; //右子节点初始化

HT[i].weight = 0; //权重初始化

}

int min1, min2;

int *ad_min1 = &min1;//用于传递最小权重的节点

int *ad_min2 = &min2; //用于传递最小权重的节点

//每一轮比较后选择出min1和min2构成一课二叉树,最后构成一棵赫夫曼树

for (i = n; i

{

ChoseMinium2(HT, i, ad_min1, ad_min2); //选出权重最小的两个节点

HT[min1].parent = i; //父节点赋值

HT[min2].parent = i; //父节点赋值

HT[i].lchild = min1; //左子节点赋值

HT[i].rchild = min2; //右子节点赋值

HT[i].weight = HT[min1].weight + HT[min2].weight; //权重为两个子节点权重之和

}

return HT;

}

/*

从叶子节点到根节点逆向求赫夫曼树HT中n个叶子节点的赫夫曼编码,并保存在code中

*/

void HuffmanCoding(HfStruct HT, HCodeType HuffCode[], int n)

{

HCodeType cd;

int i,j,current,father;

for (i = 0; i

{

cd.start = n - 1;

current = i; //定义当前访问的节点

father = HT[i].parent; //当前节点的父节点

//从叶子节点向上搜索

while (father != -1)

{

if (HT[father].lchild == current) //如果是左子节点,则编码为0

cd.code[cd.start--] = '0';

else//如果是右子节点,则编码为1

cd.code[cd.start--] = '1';

current = father;

father = HT[father].parent;

}

for (j = cd.start + 1; j

HuffCode[i].code[j] = cd.code[j];

HuffCode[i].start = cd.start;

}

}

f0dc840de88a47f8a788d3c43accc18f.jpg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值