python狗品种识别_卷积神经网络(CNN)项目,给你一个狗的图像,你的算法将会识别并估计狗的品种...

该项目涉及使用卷积神经网络(CNN)对狗的品种进行识别。通过接收用户上传的狗的图像,算法能够识别狗的品种。同时,如果输入的是人的图像,代码会返回最相似的狗的品种。项目涵盖了CNN模型的学习,数据处理管道的设计,以及解决实际应用中遇到的问题。参与者需要下载数据集,安装依赖,然后在Jupyter notebook中实现和运行代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

广告:Udacity课程优惠券:邀请码: 67D6DA2E,立减 300 元

项目概述

欢迎来到卷积神经网络(CNN)项目!在这一项目中,你将学到如何建立一个处理现实生活中的,用户提供的图像的算法。给你一个狗的图像,你的算法将会识别并估计狗的品种,如果提供的图像是人,代码将会识别最相近的狗的品种。

在学习用于分类的最先进的 CNN 模型的同时,你将会为用户体验做出重要的设计与决定。我们的目标是,当你完成这一项目时,你将可以理解,通过将一系列模型拼接在一起,设计数据处理管道完成各式各样的任务所面临的挑战。每个模型都有它的优点与缺点,并且设计实际应用时,经常会面对解决许多没有最优解的问题。尽管你的解答不是最优的,但你的设计将带来愉快的用户体验!

项目指南

步骤

克隆存储库并打开下载的文件夹。

git clone https://github.com/udacity/cn-deep-learning.git

cd cn-deep-learning/dog-project

下载狗狗数据集 ,并将数据集解压大存储库中,地点为项目路径/dogImages.

下载人类数据集。并将数据集解压大存储库中,位置为项目路径/lfw。

为狗狗数据集下载 VGG-16关键特征 并将其放置于存储库中,位置为项目路径/bottleneck_features。

安装必要的 Python 依赖包

对于 Mac/OSX:

conda env create -f requirements/dog-mac.yml

source activate dog-project

KERAS_BACKEND=tensorflow python -c "from keras import backend"

对于 Windows:

conda env create -f requirements/dog-windows.yml

activate dog-project

set KERAS_BACKEND=tensorflow

python -c "from keras import backend"

打开 notebook

jupyter notebook dog_app.ipynb

注意: 我们虽然已经实现了一些代码,让你更快地开始工作,你仍需要实现额外的功能,以回答 notebook 中所有的问题。 除非有要求,否则不要修改任何已经包含的代码。

项目评审

你的项目将会由优达学城的审阅者依据次项目的评审标准进行审阅。请仔细阅读,并在提交之前自我评估你的项目。你必须通过了规则中的所有要求,才会审核通过。

项目提交

当你准备好提交你的项目时,将下列文件整理并压缩成一个文件,以便上传。

代码完整可运行的文件 dog_app.ipynb,所有的代码块都要执行并展示结果,并要求回答所有问题

将你的 notebook 导出为 HTML 或 PDF 格式,并以 report.html 或是 report.pdf 命名

任何用于项目中,并且并非由我们为这一项目提供的额外数据图片。 请不要将 dogImages/ 或是 lfw/ 文件夹中的项目数据包含在内,同样的,请不要将 bottleneck_features/ 文件夹包含在内。

此外,你也可以通过 GitHub 连接提交项目。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值