傅里叶变换是一种线性积分变换,用于信号在时域和频域之间的表示,在数学、物理、数字信号处理等领域有重要应用。
我们常看到傅里叶级数、傅里叶变换、离散时间傅里叶变换、离散傅里叶变换等概念,本文对这些概念进行简单的梳理和介绍。
1. 傅里叶级数
考虑一个在区间 上可积的函数 ,其傅里叶级数 (Fourier Series - FS) 为
其中
说明 为了简化括号,我们把, 简写为,,下文以此类推。
由欧拉公式 得
代入可得
令
则可以得到傅里叶级数的复数形式
根据,可写成如下形式:
2. 傅里叶变换
傅里叶变换 (Fourier Transform - FT) 可以看作傅里叶级数的连续形式。
首先考虑定义在 上的函数的傅里叶级数展开:
其中
根据上式,我们也可以把理解为关于的一个函数, 即
其中是一个常数,令
我们有
注意到
下面把用表示,我们有
当 时,,, 中的求和变为积分
相应地, 变为
称为傅里叶变换,记作 ; 称为傅里叶变换的逆变换,记作 。在信号分析中, 称为信号的时域表示, 称为信号的频域表示。
需要明确的是,不管是用时