堆排序怎么建立初始堆_基于PHP实现堆排序原理

本文介绍了堆排序的概念,包括堆的定义、完全二叉树的特性,以及堆排序的步骤。通过PHP代码展示了如何建立小顶堆并进行降序排序,强调了堆排序在求TopK问题上的效率优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

e871d266918a3c864337991fb57a0de6.png

php中文网最新课程

每日17点准时技术干货分享

7ac31d5fe5a8e22d646e30bd7fe285c1.png

7a9c2ca59cf94a86e72e4f0d2fe1e5f7.gif

堆(heap)是计算机科学中一类特殊的数据结构的统称,通常是一个可以被看做一棵树的数组对象。

堆{k1,k2,ki,…,kn} (ki <= k2i,ki <= k2i+1)|(ki >= k2i,ki >= k2i+1), (i = 1,2,3,4...n/2)

关于堆:

  • 堆中某个节点的值总是不大于或不小于其父节点的值;

  • 堆总是一棵完全二叉树(下面)。

  • 将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

完全二叉树

说到堆排序,就不能不提完全二叉树,这些基本概念在网上到处都是,我摘了个最简单的。。

完全二叉树:除最后一层外,每一层上的节点数均达到最大值;在最后一层上只缺少右边的若干结点。

我自己总结认为,正是因为有下面两个特点,

  • 只允许最后一层有空缺结点且空缺在右边,即叶子结点只能在层次最大的两层上出现(存储方式的规则性);

  • 若i>1,tree的双亲为tree[i p 2](其父子结点值的规律性);

才使得其进行排序非常方便。

堆排序

堆排序求升序用大顶堆,求降序用小顶堆。

本例用求降序的小顶堆来解析。

堆排序步骤如下:

1、我们将数据(49、38、65、97、76、13、27、50)建立一个数组$arr;

2、用数组$arr建立一个小顶堆(主要步骤,会在代码注释里解释,下图是用一个数组建立小顶堆的过程);

3、将堆的根(最小的元素)与最后一个叶子交换,并将堆长度减一,跳到第二步;

4、重复2-3步,直到堆中只有一个结点,排序完成。

f78568a8f9fb63c05da1faea836e55bc.png

堆排序的PHP实现

//因为是数组,下标从0开始,所以,下标为n根结点的左子结点为2n+1,右子结点为2n+2; //初始化值,建立初始堆$arr=array(49,38,65,97,76,13,27,50);$arrSize=count($arr);//将第一次排序抽出来,因为最后一次排序不需要再交换值了。buildHeap($arr,$arrSize);for($i=$arrSize-1;$i>0;$i--){  swap($arr,$i,0);  $arrSize--;  buildHeap($arr,$arrSize);  }//用数组建立最小堆function buildHeap(&$arr,$arrSize){  //计算出最开始的下标$index,如图,为数字"97"所在位置,比较每一个子树的父结点和子结点,将最小值存入父结点中  //从$index处对一个树进行循环比较,形成最小堆  for($index=intval($arrSize/2)-1; $index>=0; $index--){    //如果有左节点,将其下标存进最小值$min    if($index*2+1      $min=$index*2+1;      //如果有右子结点,比较左右结点的大小,如果右子结点更小,将其结点的下标记录进最小值$min      if($index*2+2        if($arr[$index*2+2]          $min=$index*2+2;        }      }      //将子结点中较小的和父结点比较,若子结点较小,与父结点交换位置,同时更新较小      if($arr[$min]        swap($arr,$min,$index);      }      }  }}//此函数用来交换下数组$arr中下标为$one和$another的数据function swap(&$arr,$one,$another){  $tmp=$arr[$one];  $arr[$one]=$arr[$another];  $arr[$another]=$tmp;}

下面是排序的最终结果:

f9de514574891246cc6eac6c257842d8.png

堆用来进行全排序,时间复杂度是O(nlogn)

而快排用来全排序,平均时间复杂度也是O(nlogn)

但堆排序可以用来求 TopK 时,堆的时间复杂度为O(Klog2(n),因为它只需要进行 K 轮排序即可。

12d19e91415e51b68e2c7247f98c96c8.png

351a222d65afbed2d165902ff1bfa28a.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值