返回的到的数据做整合_如何使用 Seurat 分析单细胞测序数据( Q&A)-中

这篇博客解答了关于单细胞测序数据分析中使用 Seurat 的疑问,涉及降维分析如PCA、UMAP和tSNE的原理与应用。PCA用于降低基因表达数据的维度,UMAP用于数据可视化。讨论了聚类分析中的问题,如聚类效果不佳的可能原因和解决方案,并介绍了Seurat中聚类参数的调整。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

4f68cb93e6e2d91cf5cff6ed41b37d08.png

5. 关于降维分析

Q: ElbowPlot 的拐点是指这个点后面基本持平了么? / 請問如何判斷 elbow 拐點呢?為何不是在 3~4,而是在 9~10/ PC 拐点如何界定?

A: ElbowPlot 作图后,用肉眼观察,当曲线进入平台期,没有明显继续下降的趋势就可以了。ElbowPlot 默认显示 20 个 PC,如果发现 20 个 PC 还没有到达平台期,可以修改 ElbowPlot 函数的 ndims 参数。 RunPCA 函数默认计算 50 个 PC,如果想看更多的 PC,可以修改 RunPCA 的npcs 参数。

Q:请问 PCA 那页,是细胞和基因都做过 PCA 么?

A: 在 Seurat 中,我们是对细胞做 PCA 分析,也就是对细胞做降维分析,比如从 2000 维(基因)降到 50 维( PC)。一般情况下,我们不会对基因做 PCA 分析。

Q: PCA 中的 embedding 可以再解释下么?

A:比如,原本每个细胞有 2000 个基因,每个基因在各个细胞中都有表达量,做了 PCA 分析后,每个细胞有 50 个 PC,每个 PC 在各个细胞中都有 embedding 值。为了便于理解,你可以把 PC 看成是整合了多个基因的 meta-gene,把 cell embedding 看成是这些 meta-gene 的表达量。

Q: 可不可以讲下 umap 和 tSNE 的主要原理?

A: UMAP 和 tSNE 都是非线性的降维方法,是把在高维空间中的点(我们人类肉眼无法观察)投射到二维平面上。这些高维空间中的点是有一定结构的,有些点彼此之间距离更近,有些点距离更远。我们在降维的过程要尽量保留这种结构,让在高维空间中更近的点,在二维平面

### Seurat 单细胞测序数据分析方法教程 Seurat 是一种强大的 R 工具包,专门用于单细胞 RNA 测序(scRNA-seq)数据分析。以下是使用 Seurat 进行单细胞测序数据分析的完整流程[^1]。 #### 数据读取与预处理 在进行分析之前,需要将原始数据加载到 R 环境中,并创建一个 Seurat 对象。以下代码展示如何读取 10X Genomics 格式的 scRNA-seq 数据: ```r library(Seurat) library(dplyr) # 读取 10X Genomics 数据 pbmc.data <- Read10X(data.dir = "./filtered_gene_bc_matrices/hg19") # 创建 Seurat 对象 pbmc.obj <- CreateSeuratObject(counts = pbmc.data, project = "pbmc3k", min.cells = 3, min.features = 200) ``` 上述代码中,`Read10X` 函数读取了 10X Genomics 数据,并返回了一个稀疏矩阵。矩阵中的每一行表示一个基因,每一列表示一个细胞。通过 `CreateSeuratObject` 函数创建了一个 Seurat 对象,同时设置了每个基因至少在 3 个细胞中表达,以及每个细胞至少检测到 200 个基因的阈值[^1]。 #### 质控与过滤 为了确保下游分析的质量,需要移除低质量的细胞和基因。这一步通常包括以下步骤: - 移除线粒体比例过高或总分子数异常的细胞。 - 移除低表达的基因。 以下是质控的代码示例: ```r # 添加线粒体比例信息 mito.genes <- grep(pattern = "^MT-", x = rownames(x = pbmc.obj), value = TRUE) pbmc.obj[["percent.mt"]] <- PercentageFeatureSet(object = pbmc.obj, pattern = "^MT-") # 绘制质控指标图 VlnPlot(object = pbmc.obj, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3) FeatureScatter(object = pbmc.obj, feature1 = "nCount_RNA", feature2 = "percent.mt") FeatureScatter(object = pbmc.obj, feature1 = "nFeature_RNA", feature2 = "nCount_RNA") # 过滤细胞 pbmc.obj <- subset(pbmc.obj, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5) ``` 通过上述代码,可以有效过滤掉低质量的细胞和基因[^2]。 #### 数据标准化与归一化 标准化是将每个细胞的总分子数调整为相同值的过程,以便比较不同细胞之间的基因表达水平。归一化则是对数据进行对数变换,以减少高表达基因的影响。 ```r pbmc.obj <- NormalizeData(object = pbmc.obj, normalization.method = "LogNormalize", scale.factor = 10^4) pbmc.obj <- FindVariableFeatures(object = pbmc.obj, selection.method = "vst", nfeatures = 2000) ``` #### 降维与聚类 降维和聚类是单细胞数据分析的核心步骤。Seurat 提供了 PCA 和 t-SNE/UMAP 方法进行降维,并基于降维结果进行聚类。 ```r # PCA 分析 pbmc.obj <- ScaleData(object = pbmc.obj) pbmc.obj <- RunPCA(object = pbmc.obj, features = VariableFeatures(object = pbmc.obj)) DimPlot(object = pbmc.obj, reduction = "pca") # 聚类 pbmc.obj <- FindNeighbors(object = pbmc.obj, dims = 1:10) pbmc.obj <- FindClusters(object = pbmc.obj, resolution = 0.5) # UMAP 可视化 pbmc.obj <- RunUMAP(object = pbmc.obj, dims = 1:10) DimPlot(object = pbmc.obj, reduction = "umap", label = TRUE) ``` #### 差异基因分析与注释 最后,可以通过差异基因分析识别不同细胞群的标记基因,并结合已知数据库进行注释。 ```r # 差异基因分析 pbmc.markers <- FindAllMarkers(object = pbmc.obj, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25) # 查看标记基因 top.markers <- pbmc.markers %>% group_by(cluster) %>% top_n(n = 3, wt = avg_log2FC) print(top.markers) ``` 通过上述流程,可以完成从数据读取到细胞注释的完整单细胞数据分析过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值