原创:亲爱的数据
(一)
若说大模型应用开发是淘金,
加速应用开发的框架,工具,平台则是“生产淘金铲子”。
有人淘金,总有人生产铲子。
机会一定会被头部厂商捕捉。
而开源产品总是先出发。
LangChain是一个开源的大模型应用框架。
2023年3月,LangChain与亚马逊云、谷歌和微软云等系统集成。
当然,大模型应用开发的难易程度,取决于开发者的水平。
有开发者感慨:“LangChain真香”。
也有小白开发者吐槽:“与LangChain缠斗了几个小时,只是为了用它的两个功能。”
LangChain可提升大型语言模型的应用程序开发效率,
提供了用于构建应用的工具和模块。
举个例子,假如一个手机APP叫“绿了么”。
用大模型加持“绿了么”APP的时候,
LangChain会参与一个这样的Pipeline(执行任务的过程):
首先,“绿了么”APP把问题发送给大模型。
其次,大模型理解并回答问题。
第三,大模型的答案发送回“绿了么”APP。
在这个Pipeline上,除了大模型的工作,剩下的工作LangChain可以接手。
LangChain是一种软件框架,便于开发各种大模型原生应用。
调戏过大模型的人都知道,开箱即用的玩法就是在那个窗口里输入提问。
只能一问一答这么个玩,就太局限了。
很快,人们开始思考,不如把大模型变成一个超级组件,和别的东西“拼”在一起玩。
但有时候会有点小麻烦。
若在大企业部署就更麻烦,牵扯到很多API,以及其他麻烦事(身份验证,流量控制,鉴别权限)。
这时候就需要大模型外挂。
我再换个例子来聊:
一个被大模型加持的AI Agent由三部分构成。
第一,信号采集,
第二,处理端,
第三,执行端。
先说大模型在哪。
大模型在第二个部分处理端里面。
这时候大模型是Agent的一部分,而工程化的连接工作存在于第一部分和第三部分,这些工作可以自动化,并且交给大模型外挂。
或者说,把信号采集和执行端合起来的需求都交给大模型外挂。
除了大模型干好自己的工作,剩下的大模型外挂接手。
外挂接收外界请求,大语言模型来生成答案,外挂将答案转换为响应,并将响应返回给 API。API它是软件系统之间相互交互的一种手段。API 定义了软件系统如何相互调用,并提供一个标准的接口,外挂自动生成大语言模型服务的API。