Pandas2.2 Series
Time Series-related
方法 | 描述 |
---|---|
Series.asfreq(freq[, method, how, …]) | 用于将时间序列数据转换为指定的频率 |
Series.asof(where[, subset]) | 用于返回时间序列中指定索引位置的最近一个非缺失值 |
Series.shift([periods, freq, axis, …]) | 用于将时间序列数据沿指定轴移动指定的周期数 |
Series.first_valid_index() | 用于返回时间序列中第一个非缺失值(非 NaN )的索引 |
Series.last_valid_index() | 用于返回时间序列中最后一个非缺失值(非 NaN )的索引 |
Series.resample(rule[, axis, closed, label, …]) | 用于对时间序列数据进行重采样 |
Series.tz_convert(tz[, axis, level, copy]) | 用于将时间序列中的时间戳从一个时区转换到另一个时区 |
Series.tz_localize(tz[, axis, level, copy, …]) | 用于将 无时区信息的时间序列 转换为 有时区信息的时间序列 |
Series.at_time(time[, asof, axis]) | 用于筛选时间序列中特定时间点的数据 |
Series.between_time(start_time, end_time[, …]) | 用于筛选时间序列中在指定时间段内的数据 |
pandas.Series.between_time
pandas.Series.between_time
方法用于筛选时间序列中在指定时间段内的数据。它可以提取出在给定的开始时间和结束时间之间的所有数据点。
详细描述
- 参数:
start_time
: 开始时间,可以是字符串(如'9:30'
)、datetime.time
对象或pd.Timedelta
。end_time
: 结束时间,可以是字符串(如'16:00'
)、datetime.time
对象或pd.Timedelta
。inclusive
: 可选,默认为'both'
。指定是否包含边界时间:'both'
:包含开始和结束时间。'neither'