Pandas2.2 DataFrame
Function application, GroupBy & window
方法 | 描述 |
---|---|
DataFrame.apply(func[, axis, raw, …]) | 用于沿 DataFrame 的轴(行或列)应用一个函数 |
DataFrame.map(func[, na_action]) | 用于对 DataFrame 的每个元素应用一个函数 |
DataFrame.applymap(func[, na_action]) | 用于对 DataFrame 中的每一个元素应用一个函数 |
DataFrame.pipe(func, *args, **kwargs) | 用于实现链式编程风格的方法 |
DataFrame.agg([func, axis]) | 用于对 DataFrame 的数据进行聚合操作 |
DataFrame.aggregate([func, axis]) | 用于对 DataFrame 进行聚合操作的方法 |
DataFrame.transform(func[, axis]) | 用于对 DataFrame 的列或行应用函数 |
DataFrame.groupby([by, axis, level, …]) | 用于进行分组操作的核心方法 |
DataFrame.rolling(window[, min_periods, …]) | 用于在 DataFrame 上创建滑动窗口对象 |
pandas.DataFrame.rolling()
pandas.DataFrame.rolling()
用于在 DataFrame 上创建滑动窗口对象,支持对窗口内的数据应用聚合函数(如均值、求和等)。以下是详细说明及示例:
语法
DataFrame.rolling(
window, # 窗口大小(观测数量或时间间隔)
min_periods=None, # 窗口内最小非NaN数据量(默认等于window)
center=False, # 是否居中窗口(默认窗口向后对齐)
win_type=None, # 窗口类型(如 'triang', 'gaussian' 等)
on=None, # 对指定列(时间序列)应用窗口
axis=0, # 轴向:0(按列滑动),1(按行滑动)
closed=None