python 加权随机算法_加权随机算法 - 飞儿飞的个人空间 - OSCHINA - 中文开源技术交流社区...

博客介绍了加权随机算法的应用场景,即从集合中按不同概率随机抽取项。详细阐述了三种实现方法,包括扩展集合、计算权重总和遍历集合以及对集合排序优化遍历。还给出了Python代码实现,并提出从不同权重省份选号码的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

加权随机算法一般应用在以下场景:有一个集合S,里面比如有A,B,C,D这四项。这时我们想随机从中抽取一项,但是抽取的概率不同,比如我们希望抽到A的概率是50%,抽到B和C的概率是20%,D的概率是10%。一般来说,我们可以给各项附一个权重,抽取的概率正比于这个权重。那么上述集合就成了:

{A:5,B:2,C:2,D:1}

方法一:

扩展这个集合,使每一项出现的次数与其权重正相关。在上述例子这个集合扩展成:

{A,A,A,A,A,B,B,C,C,D}

然后就可以用均匀随机算法来从中选取。

好处:选取的时间复杂度为O(1),算法简单。

坏处:空间占用极大。另外如果权重数字位数较大,例如{A:49.1 B:50.9}的时候,就会产生巨大的空间浪费。

方法二:

计算权重总和sum,然后在1到sum之间随机选择一个数R,之后遍历整个集合,统计遍历的项的权重之和,如果大于等于R,就停止遍历,选择遇到的项。

还是以上面的集合为例,sum等于10,如果随机到1-5,则会在遍历第一个数字的时候就退出遍历。符合所选取的概率。

好处:没有额外的空间占用,算法也比较简单。

坏处:选取的时候要遍历集合,时间复杂度是O(n)。

方法三:

可以对方法二进行优化,对项目集按照权重排序。这样遍历的时候,概率高的项可以很快遇到,减少遍历的项。

比较{A:5,B:2,C:2,D:1}和{B:2,C:2,A:5,D:1}

前者遍历步数的期望是5/10*1+2/10*2+2/10*3+1/10*4而后者是2/10*1+2/10*2+5/10*3+1/10*4。

好处:提高了平均选取速度。

坏处:需要进行排序,并且不易添加删除修改项。

解决:

这是能想到和能看到的最多的版本,不知道还没有更高效好用的算法。

#!/usr/bin/env python

# -*- coding: utf-8 -*-

#python2.7x

#random_weight.py

#author: orangleliu@gmail.com 2014-10-11

'''''

每个元素都有权重,然后根据权重随机取值

输入 {"A":2, "B":2, "C":4, "D":10, "E": 20}

输出一个值

'''

import random

import collections as coll

data = {"A":2, "B":2, "C":4, "D":6, "E": 11}

#第一种 根据元素权重值 "A"*2 ..等,把每个元素取权重个元素放到一个数组中,然后最数组下标取随机数得到权重

def list_method():

all_data = []

for v, w in data.items():

temp = []

for i in range(w):

temp.append(v)

all_data.extend(temp)

n = random.randint(0,len(all_data)-1)

return all_data[n]

#第二种 也是要计算出权重总和,取出一个随机数,遍历所有元素,把权重相加sum,当sum大于等于随机数字的时候停止,取出当前的元组

def iter_method():

total = sum(data.values())

rad = random.randint(1,total)

cur_total = 0

res = ""

for k, v in data.items():

cur_total += v

if rad<= cur_total:

res = k

break

return res

def test(method):

dict_num = coll.defaultdict(int)

for i in range(100):

dict_num[eval(method)] += 1

for i,j in dict_num.items():

print i, j

if __name__ == "__main__":

test("list_method()")

print "-"*50

test("iter_method()")

一次执行的结果

A 4

C 14

B 7

E 44

D 31

--------------------------------------------------

A 8

C 16

B 6

E 43

D 27

问题:

例如我们要选从不同省份选取一个号码,每个省份的权重不一样,直接选随机数肯定是不行的了,就需要一个模型来解决这个问题。

简化成下面的问题:

字典的key代表是省份,value代表的是权重,我们现在需要一个函数,每次基于权重选择一个省份出来

{"A":2, "B":2, "C":4, "D":10, "E": 20}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值