sad代价计算_opencvSGBM半全局立体匹配算法的研究(1)

本文详细介绍了opencvSGBM半全局立体匹配算法,包括预处理步骤(水平Sobel算子处理和梯度映射)、代价计算(梯度代价与SAD代价)、动态规划过程以及后处理(唯一性检测、亚像素插值、左右一致性检查和连通区域检测)。还探讨了关键参数的设置和意义,如preFilterCap、SADWindowSize、minDisparity、numberOfDisparities等,并给出了运行效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载请说明出处:http://blog.csdn.net/zhubaohua_bupt/article/details/51866567算法

这段时间对opencvSGBM半全局立体匹配算法进行了比较细致的研究,现总结一下。函数

本文先描述一下opencvSGBM算法流程,接着给出调用opencvSGBM须要设置参数的含义、数值选取以及运行效果,最后贴出opencvSGBM源码。测试

第一部分:SGBM算法研究总结:ui

整个算法实现分为spa

1预处理.net

2代价计算blog

3动态规划(默认4条路径)源码

4后处理it

这四个步骤。下面分别说明一下各个步骤:io

预处理

Step1:SGBM采用水平Sobel算子,把图像作处理,公式为:

Sobel(x,y)=2[P(x+1,y)-P(x-1,y)]+ P(x+1,y-1)-P(x-1,y-1)+ P(x+1,y+1)-P(x-1,y+1)

Step2:用一个函数将通过水平Sobel算子处理后的图像上每一个像素点(P表示其像素值

)映射成一个新的图像:PNEW表示新图像上的像素值。

映射函数:

preFilterCap 为一个常数参数,opencv缺省状况下取15,例程中取63。

预处理其实是获得图像的梯度信息。

经预处理的图像保存起来,将会用于计算代价

代价计算

代价有两部分组成:

1通过预处理获得的图像的梯度信息通过基于采样的方法获得的梯度代价

2原图像通过基于采样的方法获得的SAD代价

上述两个代价都会在SAD窗口内进行计算。

关于什么是基于采样的方法,参考论文:DepthDisc

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值