python高斯滤波和降噪_高斯滤波详解 附python和matlab高斯滤波代码

本文详细介绍了高斯滤波的概念及其在图像处理中的作用,解释了标准差σ对滤波效果的影响,并提供了Python和MATLAB的高斯滤波代码示例,展示了如何使用这两个工具进行图像降噪处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一. 高斯滤波

高斯滤波是一种线性平滑滤波器,对于服从正态分布的噪声有很好的抑制作用。在实际场景中,我们通常会假定图像包含的噪声为高斯白噪声,所以在许多实际应用的预处理部分,都会采用高斯滤波抑制噪声。

高斯滤波和均值滤波一样,都是利用一个掩膜和图像进行卷积求解。不同之处在于:均值滤波器的模板系数都是相同的,为1。而高斯滤波器的模板系数,随着距离模板中心距离的增大,系数减小(服从二维高斯分布)。所以,高斯滤波器相比于均值滤波器而言,对图像模糊程度较小,更能保持图像的整体细节。

1240二维高斯分布

我们不必纠结于系数

math?formula=%5Cfrac%7B1%7D%7B(%5Csqrt%7B2*%CF%80%7D*%5Csigma)%5E2%20%20%20%7D%20,因为它只是一个常数!并不会影响互相之间的比例关系,而且最终都要进行归一化,所以在实际计算时我们忽略它而只计算后半部分

math?formula=e%5E%7B-((x-ux)%5E2%2B(y-uy)%5E2)%2F2%5Csigma%20%5E2%7D

其中(x,y)为掩膜内任一点的坐标,(ux,uy)为掩膜内中心点的坐标,在图像处理中可认为是整数;σ是标准差。

例如:要产生一个3×3的高斯滤波器模板,以模板的中心位置为坐标原点进行取样。(x轴水平向右,y轴竖直向下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值