python plot设置坐标轴_Matplotlib入门-2-坐标轴axis/axes设置

本文介绍了Python Matplotlib库中如何设置坐标轴的刻度范围、标度间隔、坐标轴标签以及标度值的替换。通过实例展示了xlim()、ylim()、xticks()、yticks()等函数的使用,帮助读者更好地控制图表的显示效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里并没有涵盖所有的的关于axis的设置方法,将一些常用的操作写出来,供大家学习使用。其余的一些高级操作,作为前期学习而言也没必要展示,用到的话,后续再补充。

学习前欢乐一下:这里有个Python界未有定论的问题(滑稽=,=),请问我们之前安装的科学计算模块numpy怎么发音呢?有知道的小伙伴,把答案写在评论区。

我今天看了篇帖子,把我搞懵= =|||......我自己都不会读了,哈哈

(1)坐标轴刻度范围及标度间隔调整

在对数据进行可视化展示时,默认提供的刻度范围和标度间隔并不是我们想要的,例如下图

先简单解释一下这个图像的生成过程,主要用到了numpy中的linspace( )函数,该函数的作用是在指定的间隔内返回均匀间隔的数字,代码如下,print一下,截图直观感受

import numpy as np

n = np.linspace(5, 11, 4)

print(n)

通过np.linspace(5, 11, 4)产生了区间在(5, 11)之间的均匀分布的数据样本

这样做得好处就是不用“笨笨的”自己在数组中编数据(自己慢慢理解)

那么上图代码就非常好写了(有一点点简单函数知识)

import matplotlib.pyplot as plt

import numpy as np

# 产生区间在-5至4间的30个均匀数值(当做x坐标值,并当做下面两个方程共同的输入)

n = np.linspace(-5, 4, 30)

m1 = 3 * n + 2 # 二元一次方程,即直线

m2 = n ** 2 # 二元二次方程,即抛物线

plt.plot(n, m1, 'r-.', n, m2, 'b')

plt.show()

假定,默认成图后,需要观察的区域只限于直线与抛物线相交部分,那么如何操作呢?

利用xlim( )和ylim( )函数进行优化,可以分别设定X轴和Y轴的取值范围

观察上图,直线与抛

### 如何在 Matplotlib 中更改坐标轴的颜色 在 Matplotlib 中,可以通过多种方式调整坐标轴的颜色。以下是具体方法及其解释: #### 方法一:通过 `tick_params` 修改刻度颜色 可以使用 `axes.tick_params` 来设置坐标轴上的刻度颜色以及刻度签的颜色。这种方法适用于单独控制 X 轴或 Y 轴的颜色。 ```python import matplotlib.pyplot as plt import numpy as np x = np.linspace(0, 10, 100) y = np.sin(x) fig, ax = plt.subplots() ax.plot(x, y, 'r-', label="Sine Wave") # 设置 X 和 Y 轴的刻度颜色 ax.tick_params(axis='x', colors='blue') # 设置 X 轴刻度颜色为蓝色 ax.tick_params(axis='y', colors='green') # 设置 Y 轴刻度颜色为绿色 plt.legend() plt.show() ``` 上述代码展示了如何分别设置 X 轴和 Y 轴的刻度颜色[^4]。 --- #### 方法二:通过 `spines` 更改整个坐标轴的颜色 Matplotlib 的 `spines` 属性允许更全面地定制坐标轴外观,包括线条颜色、位置等。以下是如何更改整个坐标轴的颜色: ```python import matplotlib.pyplot as plt import numpy as np x = np.linspace(0, 10, 100) y = np.cos(x) fig, ax = plt.subplots() ax.plot(x, y, 'g-', label="Cosine Wave") # 设置 spines 颜色 for spine in ['top', 'bottom', 'left', 'right']: ax.spines[spine].set_color('purple') # 将所有边界框设为紫色 # 可选:隐藏某些脊柱 ax.spines['top'].set_visible(False) # 隐藏顶部脊柱 ax.spines['right'].set_visible(False) # 隐藏右侧脊柱 plt.legend() plt.show() ``` 此代码片段说明了如何利用 `spines` 属性来统一改变坐标轴的整体颜色,并可以选择性隐藏部分脊柱[^1]。 --- #### 方法三:自定义次坐标轴颜色 当存在双纵轴或多坐系时,可独立设置每个坐标轴的颜色。例如,在创建次坐标轴的情况下,如下所示: ```python import matplotlib.pyplot as plt import numpy as np x = np.linspace(0, 10, 100) y1 = np.sin(x) y2 = np.log(x + 1) fig, ax1 = plt.subplots() # 主坐标轴 ax1.plot(x, y1, 'b-') ax1.set_ylabel('sin(x)', color='blue') # 次坐标轴 ax2 = ax1.twinx() ax2.plot(x, y2, 'r-') ax2.set_ylabel('log(x+1)', color='red') # 自定义主/次坐标轴颜色 ax1.yaxis.label.set_color('blue') # 设置坐标轴签颜色 ax2.yaxis.label.set_color('red') # 设置坐标轴签颜色 # 刻度颜色同步 ax1.tick_params(axis='y', colors='blue') ax2.tick_params(axis='y', colors='red') plt.show() ``` 这段代码演示了如何在一个图表中同时管理两个不同颜色的坐标轴[^3]。 --- #### 总结 以上三种方法涵盖了从简单到复杂的场景下如何更改 Matplotlib 图表中的坐标轴颜色。无论是单个坐标轴还是多坐标轴环境,都可以灵活应用这些技术实现所需效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值