spearman相关性分析_西安交通大学432统计学——必考简答题4:spearman等级相关系数...

本文介绍了Spearman等级相关系数的概念、原理,包括其取值范围、相关性强度判断,以及在非正态分布或等级数据中的应用。重点讲解了如何计算和其在变量值为等级时的适用性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

20b7857630ae4e845b511837001cd259.png

spearman等级相关系数考过17年的真题,同学们一定要重视。

1. 条件:

两个变量之间简单线性相关系数要求两个随机变量的联合分布是二维正态分布。当变量不满足正态分布要求时,或者所研究的变量不是数值型变量时,简单线性相关系数的相关分析方法不宜使用,这时可以用spearman等级相关系数作相关性分析。

2. 原理:

对于样本容量为n的变量x和y,如果x和y的取值分别都可以分为n个等级,而且样本的n个单位分别不重复地属于x和y地不同等级,没有两个单位取相同等级的情况,并且用di表示样本单位属于x的等级与y的等级的级差。spearman等级相关系数rs为:

92ee6eec6ff58affac40e913bac06f07.png

3. 特点

样本等级相关系数的取值范围是-1≤rs≤1。rs=1时,说明样本等级完全正相关;rs=-1时,说明样本等级完全负相关;rs=0时,说明样本等级不相关;当0<rs<1时,rs越接近1,正相关程度越高;当-1<rs<0时,rs越接近-1,负相关程度越高。可以证明,spearman等级相关系数是简单线性相关系数的特例。

4. 适用范围:

等级相关系数主要适用于变量值表现为等级的变量。但是,对于变量值表现为数值的变量,如果无法假定其总体分布,或者其中有一个变量只能用等级表现时,有时也可以用等级相关系数分析其相关性。方法是可以按实际观察值大小排序把观察值的取值范围划分为若干等级区间,并赋予每个观察值秩次而将其划分为若干等级,然后计算等级相关系数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值