labelimg批量标注图片_儿童节的数据标注感悟

本文分享了作者在儿童节期间使用LabelImg进行深度学习数据标注的经验。介绍了如何确定标注分类、选择标签及重命名图像,并提供了标注过程中的实用技巧,如处理导入目录错误和找不到框选对话框的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

欢乐的儿童节是世界的节日,这不来自非洲的小朋友们跳起了“非洲四小龙”舞蹈。

 老图突击队的“非洲四小龙”,题目猜猜有奖哦

我这个大朋友呢,需要学习使用一个玩具,LableImg,这个是深度学习的数据标注工具,可以对图像中需要识别的目标区域进行框选,以便于进行数据训练,得到想要的深度学习模型。

至于为什么不是宽度学习模型,即列和行的层数排列区别?

我知道的一个解释是,深度学习是在简单的基础上建立复杂,宽度学习的话,首次进行复杂的学习,不利于泛化,容易go die。

数据标注是深度学习的第一步。

01

数据标注

这里先上一个我昨天早上的工作成果,标注了9百多张图像。

好玩吧,祝自己儿童节快乐,哈哈。

1、标注分类

遇到数据标注问题,首先确定标注的分类,比如下图:

0b055155117d342dbe50045dee1008d1.png

2、选择标签

框选时,会让你选择分类的标签,如下视频所示:

3、图像文件名重命名

然后对已有的图像,进行重命名。因为爬虫得到的图像,名字是非常长的,不利于自己分清楚。

我使用python的如下代码,得到了下面重命名的图像。

# 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值