“
欢乐的儿童节是世界的节日,这不来自非洲的小朋友们跳起了“非洲四小龙”舞蹈。
老图突击队的“非洲四小龙”,题目猜猜有奖哦
”
我这个大朋友呢,需要学习使用一个玩具,LableImg,这个是深度学习的数据标注工具,可以对图像中需要识别的目标区域进行框选,以便于进行数据训练,得到想要的深度学习模型。
至于为什么不是宽度学习模型,即列和行的层数排列区别?
我知道的一个解释是,深度学习是在简单的基础上建立复杂,宽度学习的话,首次进行复杂的学习,不利于泛化,容易go die。
数据标注是深度学习的第一步。
01
—
数据标注
这里先上一个我昨天早上的工作成果,标注了9百多张图像。
好玩吧,祝自己儿童节快乐,哈哈。
1、标注分类
遇到数据标注问题,首先确定标注的分类,比如下图:
2、选择标签
框选时,会让你选择分类的标签,如下视频所示:
3、图像文件名重命名
然后对已有的图像,进行重命名。因为爬虫得到的图像,名字是非常长的,不利于自己分清楚。
我使用python的如下代码,得到了下面重命名的图像。
#