蓝桥杯java 最短路,算法训练 最短路 蓝桥杯

本文探讨了如何在有向图中计算从给定源点1到其他顶点的最短路径,重点介绍了Dijkstra算法和Bellman-Ford算法的原理、复杂度分析及C++代码实现。通过比较,展示了在不同场景下选择哪种算法的策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述

给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环)。请你计算从1号点到其他点的最短路(顶点从1到n编号)。

输入格式

第一行两个整数n, m。

接下来的m行,每行有三个整数u, v, l,表示u到v有一条长度为l的边。

输出格式

共n-1行,第i行表示1号点到i+1号点的最短路。

样例输入

3 3

1 2 -1

2 3 -1

3 1 2

样例输出

-1

-2

数据规模与约定

对于10%的数据,n = 2,m = 2。

对于30%的数据,n <= 5,m <= 10。

对于100%的数据,1 <= n <= 20000,1 <= m <= 200000,-10000 <= l <= 10000,保证从任意顶点都能到达其他所有顶点。

单源点最短路径

Bellman-Ford算法

知识点:

1.松弛操作

d[v]=min(d[v],d[u]+w[u,v])

不断降低原点到v点的最优值上界

2.松弛操作的性质

假设u到v的最短路是(u,X1,X2,......v),对(u,X1)(X1,X2)...(Xn,v)依次(不必连续)进行松弛操作,最后可以得到d[v]

基本思路:

对于最坏情况,最短路有n-1个结点,所以要进行n-1次松弛

每次松弛顾及所有情况,所以每条边要松弛一下

时间复杂度O(E*V),对于这道题超时了。

代码如下:

#include#include#define INF 99999999

#define min(a,b) au=st;

poi->v=end;

poi->l=len;

poi->p=(struct edge*)malloc(sizeof(struct edge));

poi=poi->p;

}

for(i=1;i<=n;i++)

d[i]=INF;

d[1]=0;

for(i=1;iu]v]=min(d[poi->v],d[poi->u]+poi->l);

poi=poi->p;

}

for(i=2;i<=n;i++)

printf("%d\n",d[i]);

}

dijkstra算法

基本思路:每次找距离小的点,更新以它为起点的边的终点的距离值

主要操作:

1.储存图

链表

用head[结点]储存以某结点为起点的一条边的编号,再用next[边]储存与某边共起点的另一条边,也能用指针

vector

一个储存边结构,一个储存某个结点对应的边序号

2.更新d[结点]原点到结点距离

有两种,一个是普通的外层结点数次循环,内层遍历d[]找最小值,时间复杂度O(n^2)

还有一种需要使用优先队列,先用结构重新定义优先级,然后先放原点进去,遍历以原点为起点的边,松弛操作,其实就是把剩下

d存在的点放到队列里,原点出列,然后找d最小的点,。。。。。。。。

这里有两个问题

每次出列的是不是未标记的最小d的点?

每次更新后,d存在的点都放进了队列,剩下的都是无穷大。

会不会有重复结点出现?

如果以u为起点的边e,终点为v,然后更新后,又有一个v点放入,会出现重复,加一个done[]数组即可。

时间复杂度O(边数*log(结点数)),

AC代码

#include

#include #include#include #include#include#includeusing namespace std;

#define min(a,b) ((aedge;

vectorG[20010];

void build(){

int from,to,dist;

for(int i=0;iprio.d;

}

};

int done[20010]={0};

void dijkstra(int s){

for(int i=1;i<=n;i++)

d[i]=INF;

d[s]=0;

priority_queueq;

q.push((node){d[s],s});

while(!q.empty()){

node x=q.top();q.pop();

int u=x.u;

if(done[u])continue;

done[u]=1;

for(int i=0;id[u]+e.dist){

d[e.to]=d[u]+e.dist;

q.push((node){d[e.to],e.to});

}

}

}

}

int main(){

scanf("%d%d",&n,&m);

build();

dijkstra(1);

for(int i=2;i<=n;i++)

printf("%d\n",d[i]);

return 0;}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值