这里指的是使用python调用ROOT的模块,编写程序用来处理数据的环境搭建方法。
经过研究,一般有四种方案
环境变量法,主要依靠ROOT本身,环境变量是关键
预编译包,但是该方法没有证实成功搭建pyroot环境,成功概率很小。
源码编译,未尝试,成功概率一般。
docker方法,未尝试,成功概率很大。
python扩展库法,采用conda安装,实测可以用。
ROOT本身已经支持,只要一行命令即可,完美方法。

环境变量按照如下设置
如果您是在linux系统,设置如下几个变量,如果是bash类型的shell,
在用户目录下的.bashrc文件写入如下几行。
$ROOTSYS这个指的是ROOT的安装目录(对应的环境变量),该环境变量已经在ROOT安装时候自动生成好了(ROOT可正常使用的情况下)。
如果是windows,则如下设置
a 预编译包的方法,就是可以直接采用官方提供的预编译好的包,例如作者在win下安装的ROOT如图所示
让我们继续探索,会发现有简单加密的pyc文件,没有加密的py以及动态库pyd。
于是,打开pycharm,新建项目,新建文件一通操作猛如虎后,写入如下测试代码,失败了,报错不好解决,放弃之。
这里具体如何解决,毕竟版本太老了。就暂时搁置了。
1.b 源码编译方法
参考ROOT文档,编译的时候要指定python的头文件和库文件路径。
configure完了后就
即可。完成后会自动生成动态链接库。
也可以参考官网的cmake方案做python选项https://root.cern.ch/building-root

这里简单提一下,具体的到docker hub的仓库搜一下即可。经过搜寻仓库有:
pedwink/pyroot-notebook
其他
以上仓库并没有实测,有兴趣的可以尝试。

仅限于linux,实测有效,windows无效。
一般而言,如果使用python,为了方便配置环境,一般采用虚拟环境,笔者在更多的情况下是使用anaconda。这里参考的还是ROOT官方的一点资料。参考地址是某个github仓库地址。主要参考命令为
实际操作命令为下图箭头的三行。
直接通过conda建立了虚拟环境,进而激活环境后,直接从conda-forge的频道安装ROOT有关的四个包即可。实测结果如下

其实方法就是ROOT自带的。要求,python环境安装了jupyter,毕竟notebook要依赖他。还有个要求是ROOT版本必须是6.05以后的版本哦。
参考资料
实测结果
从下图可以看到,既可以选择python,也可以选择c++,还是很给力的样子。

以上方法,当然推荐最后一种方法,可以说是极致懒人法,也是ROOT官方的方法,本文是有同学提出了问题,就进行了一番探索,最终给出了算是及格的答案,请继续支持。
如果您感觉本文能得到一定启发,请记得点击右下角“在看”哦。如果本文真的解决了您的问题,请自愿简单打赏哦。如果您对本文有想法或灵感或者建议,或者您有问题需要解决,可以留言到公众号或者文章下面的留言哦。笔者会根据问题的情况来以文章的方式或者简单口头回复哦。