1. 详解
STL (Seasonal-Trend decomposition procedure based on Loess) [1] 为时序分解中一种常见的算法,基于LOESS将某时刻的数据\(Y_v\)分解为趋势分量(trend component)、周期分量(seasonal component)和余项(remainder component):
\[ Y_v = T _v + S_v + R_v \quad v= 1, \cdots, N \]
STL分为内循环(inner loop)与外循环(outer loop),其中内循环主要做了趋势拟合与周期分量的计算。假定\(T_v^{(k)}\)、\(S_v{(k)}\)为内循环中第k-1次pass结束时的趋势分量、周期分量,初始时\(T_v^{(k)} = 0\);并有以下参数:
\(n_{(i)}\)内层循环数,
\(n_{(o)}\)外层循环数,
\(n_{(p)}\)为一个周期的样本数,
\(n_{(s)}\)为Step 2中LOESS平滑参数,
\(n_{(l)}\)为Step 3中LOESS平滑参数,
\(n_{(t)}\)为Step 6中LOESS平滑参数。
每个周期相同位置的样本点组成一个子序列(subseries),容易知道这样的子序列共有共有\(n_(p)\)个,我们称其为cycle-subseries。内循环主要分为以下6个步骤:
Step 1: 去趋势(Detrending),减去上一轮结果的趋势分量,\(Y_v – T_v^{(k)}\);
Step 2: 周期子序列平滑(Cycle-subseries smoothing),用LOESS (\(q=n_{n(s)}\), \(d=1\))对每个子序列做回归,并向前向后各延展一个周期;平滑结果组成temporary seasonal series,记为$C_v^{(k+1)}, \quad v = -n_{(p)} + 1, \cdots, -N + n_{(p)} $;