python 时间序列分解 stl_时间序列分解算法:STL

本文详细介绍了STL(Seasonal-Trend decomposition procedure based on Loess)算法,这是一种常用的时间序列分解方法,用于将数据分解为趋势、季节性和余项。通过内循环和外循环实现对数据的平滑处理,去除趋势和平季,提取关键信息。Python的statsmodels库提供了简单版的STL实现,而R语言中则有完整的STL函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 详解

STL (Seasonal-Trend decomposition procedure based on Loess) [1] 为时序分解中一种常见的算法,基于LOESS将某时刻的数据\(Y_v\)分解为趋势分量(trend component)、周期分量(seasonal component)和余项(remainder component):

\[ Y_v = T _v + S_v + R_v \quad v= 1, \cdots, N \]

STL分为内循环(inner loop)与外循环(outer loop),其中内循环主要做了趋势拟合与周期分量的计算。假定\(T_v^{(k)}\)、\(S_v{(k)}\)为内循环中第k-1次pass结束时的趋势分量、周期分量,初始时\(T_v^{(k)} = 0\);并有以下参数:

\(n_{(i)}\)内层循环数,

\(n_{(o)}\)外层循环数,

\(n_{(p)}\)为一个周期的样本数,

\(n_{(s)}\)为Step 2中LOESS平滑参数,

\(n_{(l)}\)为Step 3中LOESS平滑参数,

\(n_{(t)}\)为Step 6中LOESS平滑参数。

每个周期相同位置的样本点组成一个子序列(subseries),容易知道这样的子序列共有共有\(n_(p)\)个,我们称其为cycle-subseries。内循环主要分为以下6个步骤:

Step 1: 去趋势(Detrending),减去上一轮结果的趋势分量,\(Y_v – T_v^{(k)}\);

Step 2: 周期子序列平滑(Cycle-subseries smoothing),用LOESS (\(q=n_{n(s)}\), \(d=1\))对每个子序列做回归,并向前向后各延展一个周期;平滑结果组成temporary seasonal series,记为$C_v^{(k+1)}, \quad v = -n_{(p)} + 1, \cdots, -N + n_{(p)} $;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值