通过插值将输入数组映射到新坐标。
坐标数组用于为输出中的每个点查找输入中的相应坐标。这些坐标处的输入值由所请求顺序的样条插值确定。
通过放置第一个轴,可从坐标数组的形状导出输出的形状。沿第一个轴的数组的值是输入数组中找到输出值的坐标。
参数:
input:array_like输入数组。
coordinates:array_like评估输入的坐标。
output:array 或 dtype, 可选参数放置输出的数组或返回数组的dtype。默认情况下,将创建与输入相同dtype的数组。
order:int, 可选参数样条插值的顺序,默认为3。该顺序必须在0-5的范围内。
mode:{‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, 可选参数模式参数确定如何将输入数组扩展到其边界之外。默认值为‘constant’。每个有效值的行为如下:
‘reflect’(d c b a | a b c d | d c b a)通过反射最后一个像素的边来扩展输入。
‘constant’(k k k k | a b c d | k)通过使用cval参数定义的相同常数填充边以外的所有值,从而扩展了输入。
‘nearest’(a a a | a b c d | d d d d)通过复制最后一个像素来扩展输入。
‘mirror’(d c b | a b c d | b)通过围绕最后一个像素的中心进行反射来扩展输入。
‘wrap’(a b c d | a b c d | A B C D)通过环绕到相反的边来扩展输入。
cval:scalar, 可选参数如果模式为‘constant’,则该值将填充输入的后沿。默认值为0.0。
prefilter:bool, 可选参数确定输入数组是否用spline_filter插值之前。默认值为True,如果order> 1,它将创建一个临时的float64过滤值数组。如果将其设置为False,则如果order> 1,则输出将稍微模糊,除非输入是经过预先过滤的,即它是调用的结果spline_filter在原始输入上。
返回值:
map_coordinates:ndarray转换输入的结果。通过放下第一个轴,可从坐标的形状导出输出的形状。
例子:
>>> from scipy import ndimage
>>> a = np.arange(12.).reshape((4, 3))
>>> a
array([[ 0., 1., 2.],
[ 3., 4., 5.],
[ 6., 7., 8.],
[ 9., 10., 11.]])
>>> ndimage.map_coordinates(a, [[0.5, 2], [0.5, 1]], order=1)
array([ 2., 7.])
上面的插值a [0.5,0.5]给出输出[0],而a [2,1]被输出[1]。
>>> inds = np.array([[0.5, 2], [0.5, 4]])
>>> ndimage.map_coordinates(a, inds, order=1, cval=-33.3)
array([ 2. , -33.3])
>>> ndimage.map_coordinates(a, inds, order=1, mode='nearest')
array([ 2., 8.])
>>> ndimage.map_coordinates(a, inds, order=1, cval=0, output=bool)
array([ True, False], dtype=bool)