mfc中的图象保存_【值得收藏】如何画出学术论文中需要的各种精美插图,看这一篇就够了!...

本文介绍了如何使用Python的Matplotlib库快速绘制高质量的学术论文插图,包括函数图、Scatter图、3D图等,同时提到了其他辅助库如seaborn和gramm,以及配色方案的优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文整理自知乎问答,仅用于学术分享,著作权归作者所有。如有侵权,请联系后台作删文处理。

方法一

作者|冯昱尧

https://www.zhihu.com/question/21664179/answer/18928725

强烈推荐 Python 的绘图模块 matplotlib: python plotting 。画出来的图真的是高端大气上档次,低调奢华有内涵~ 适用于从 2D 到 3D,从标量到矢量的各种绘图。能够保存成从 eps, pdf 到 svg, png, jpg 的多种格式。并且 Matplotlib 的绘图函数基本上都与 Matlab 的绘图函数名字都差不多,迁移的学习成本比较低。开源免费。如图所示(以下图片均引用自 Thumbnail gallery):

像这种普通的函数图象:

36aed8caedc0b81a7f15c0a7a80dc4bd.png
plt.fill(x, y1, 'b', x, y2, 'r', alpha=0.3)

d209e223224c210d364f3068c7dd4a73.png

cc8b737a3a1919cb5d71f1f0f9c393e1.png

以及这种 Scatter 图(中文不知道该怎么说…):

5a0b91d522c35023c349e0f5eb2d8be5.png
plt.scatter(x, y, s=area, alpha=0.5)

精致的曲线,半透明的配色。都显出你那高贵冷艳的X格,最重要的是只需一行代码就能搞定。从此以后再也不用忍受 Matlab以及GNUPlot 中那蛋疼的配色了。

想画 3D 数据?没有问题 (不过用 mayavi 可能更方便一些):

4e9c4be189458a02167963ef993b5f80.png
ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3)cset = ax.contourf(X, Y, Z, zdir='z', offset=-100, cmap=cm.coolwarm)cset = ax.contourf(X, Y, Z, zdir='x', offset=-40, cmap=cm.coolwarm)cset = ax.contourf(X, Y, Z, zdir='y', offset=40, cmap=cm.coolwarm)

四行代码你就能拥有(后三行是画坐标平面上的等高线,严格的说还是一行)。

除此以外,不过你是矢量场,网络还是什么奇葩的需求都能够搞定:

7940de7fac586c1781c420ec28ed54d2.png
plt.streamplot(X, Y, U, V, color=U, linewidth=2, cmap=plt.cm.autumn)plt.colorbar()
dc04d45f12356bb70232b5b5c49cdb21.png
plt.triplot(x, y, triangles, 'go-')plt.title('triplot of user-specified triangulation')plt.xlabel('Longitude (degrees)')plt.ylabel('Latitude (degrees)')
a2f8f0088c1ede523f487895859d3c9d.png
ax = plt.subplot(111, polar=True)bars = ax.bar(theta, radii, width=width, bottom=0.0)

这还没完,Matplotlib 还支持Latex公式的插入,当别人画的图还是这个样子的时候(以下图片引用自Matplotlib Tutorial(译))

4e5e1a799ef3f458b57f5d9c7402a0c9.png

你能够把它变成这个样子:

99d64c7588f5cdd013f72bc269dc5c3f.png

如果再搭配上 IPython 作为运行终端(这张图是自己的~):

be9a152f803dc116182cc119a8b3feea.png

简直就是神器啊,有木有!

心动不如行动,还等什么?

经@许铖同学提醒,再补充一句,matplotlib 还可以画 xkcd 风格的图呦~

1814146be9bf8311ab352245bf18ebe2.png

(图片引用自网络)

此外结合 IPython Notebook 后更多精彩内容,请看http://nbviewer.ipython.org/

如果嫌安装麻烦并且恰好在 Windows 系统下的话可以尝试Python的一个发行版winpython - Portable Scientific Python 2/3 32/64bit Distribution for Windows。

鉴于@van li同学质疑 matplotlib 是否能画出题目中所示的图像,我在这里将题目中的图像用 matplotlib 画出来如下:

8e3248cdb080411659d1068875e24353.png

代码在此处:

https://gist.github.com/coldfog/c479124328fc6bb8b789

32f722cac3920984a02619693c3fb51e.png

代码在此处:

https://gist.github.com/coldfog/5da63a6958fc0a949b52

看到楼下有人说配色和好看,唉....那我也贴几个吧...只不过当初限于篇幅没有写而已。

首先,python 有一个专门的配色包jiffyclub/brewer2mpl,提供了从美术角度来讲的精美配色(戳这里感受ColorBrewer: Color Advice for Maps)。


此外还有一些致力于美化绘图的库,用起来也都非常方便,比如olgabot/prettyplotlib。

废话不多说,上图就是王道。
(下图片来源网络)

b68f49eb340d8e2ce295365ea2c73bab.png
7a6af48dc0f1dde7a2360fbbcd2b60c1.png
7fb9ec1bcd3adf1f065da809af643bce.png

有人可能会说需要复杂的设置,其实也不用。比如上边这幅图,只需要多加一个参数就好:

cmap=brewer2mpl.get_map('RdBu', 'diverging', 8, reverse=True).mpl_colormap,

楼下说到统计绘图。嘛 seaborn (https://github.com/mwaskom/seaborn) 是一个调用 matplotlib 的统计绘图库,上图:

7d5f50757c01617045a99105fe745f6e.png

代码一行,后边的几乎都是一行,没做其他设置,默认就这样。我就不贴其他的代码了:

g = sns.jointplot(x1, x2, kind="kde", size=7, space=0)
5ff8e7c8d26f2267e3b34895a0e4ff19.png
8d779abdf66f3487b8a64b12b41da09c.png
2843466bdb4a7078430d85405699b52d.png
55c3d258d05f057e73e11d5decaab84d.png
89dfb52ba59cc12eeecb743e4bd78b94.png

这还有个更炫酷的可交互式的绘图,大家自己戳开看吧:

http://nbviewer.ipython.org/github/plotly/python-user-guidechaocc/blob/master/s0_getting-started/s0_getting-started.ipynb

哼哼,完爆了吧~~~~\(≧▽≦)/~

---

遇到安装问题的请尝试Anaconda这个Python发行版。下载安装后直接使用即可,它几乎预装了所有要用到的科学计算及可视化的库。

有盆友在评论里说希望能有完整的教程,确实就这个答案来说,离实际使用还有很大的距离,网上相关的中文资料也不多。不过真要写起来这个答案也装不下,况且写在这个问题下也不是很恰当。等到那天我有专栏了再说吧,到时候也许会写一个关于可视化的系列教程。

方法二

作者|阿昆

https://www.zhihu.com/question/21664179/answer/1182984311

翻遍这个问题下的所有回答,发现凡是提到Matlab的,其评价中常有‘锯齿’,‘菜鸟’,‘难看’,‘不忍直视’等标签。

然而,2020年了,技术提升了,观念进步了,当一些基本问题解决后,Matlab还那么‘不堪’吗?

91082266cb021864600a705555b673aa.png

观察Mathematica、Origin、Python/matplotlib、R/ggplot2等软件绘制的数据、结果图,其与Matlab图的差异主要体现在点、线、面等对象属性(位置、尺寸、颜色等)的不同上

既然只是属性的不同,那是不是只要修改一下这些信息,就可以实现各种软件绘图风格之间的转换了呢?

答案是肯定的。

比如,这是高赞回答 @冯昱尧用Python/matplotlib绘制的一幅图:

677198b687a79cfb7b9386c7f9f7549c.png

我们用Matlab默认属性来绘制,效果是这样的(没加误差棒):

7d69a2f002c1b3c2ee26d03fcf049eff.png

然后,只需再修改一下位置、尺寸、颜色等信息,就可以得到风格差不多的图(没加误差棒):

dbb049d9e770b93cf432e45c198be5d6.png

当我们用这一思想来思考该如何绘制插图时,就很容易实现自己的小想法,仿造甚至创造出理想的插图。

比如,某一天,发现傍晚的天空颜色很美,心想:为什么不能把它画到论文插图里呢?(见:Matlab论文插图配色2——自然渐变)

于是,

a8c8aefb824808244e05dea1d70c10ee.png
e6beb0c16cea9c6cf836fd09a5088d2c.png

再比如,某一天,看到女朋友的照片,觉得很美,心想:为什么不能把她画到论文插图里呢?(见:Matlab论文插图配色1——是女朋友的颜色)

于是,

b4398801747865f7539759d617443048.png

这时,有朋友就要说了:“哎呀答主,你整这些个花里花哨的东西,还不是得一行代码一行代码的敲出来啊,太麻烦了吧。”

此言差矣。

就像R有ggplot2,Python有matplotlib,Matlab其实也有很多现成的绘图工具包,并不需要你自己开发。

比如,

Pierre Morel [1] 结合ggplot2,开发了gramm工具,用于绘制复杂图形。

Inspired by ggplot2 (Wickham 2009), the R implementation of “grammar of graphics” principles (Wilkinson 1999), gramm improves Matlab’s plotting functionality, allowing to generate complex figures using high-level object-oriented code.

示例效果如下:

351dd91ade8d131ed58e2866f78c9141.png
f6f854c00afa37f37f69fe0cc28238aa.png
3dba025fb6ab8ed7a59e1e88b494fec1.png
ff51ced9e31b3745c2e525a0f7024c97.png
640a327915102bbe5f45191f092747e8.png
3a92eb8b6c24172e25244152620a9d1b.png
79a94b76cb9f3160cf87da7b374a793f.png
640b94c554507d6778171dfbc2a58f78.png
b8d0590cc4fcb0d66fa6f1c8fa498671.png
703bd43289c9b53c7b50698cfa5a9d1c.png
a8c8f8abb23421b5fff0026de5787b08.png

类似的,Stephen Cobeldick [2] 将matplotlib配色方案移植到了Matlab。

也就是说,在Matlab中就可以直接用matplotlib的配色方案了,就不必总是‘jet’了。

The MatPlotLib 2.0 default colormaps ported to MATLAB. This submission also includes the Line ColorOrder colormaps!

示例效果如下:

f43e441ebd0576aa938e2b6147167cab.png
ec923200562e394810bfb64c532cee93.png

还有很多专门针对论文插图的工具包,这里就不一一介绍了。

总的来说,工具只是工具,它们并没有高低贵贱之分。

若想画出好看的插图,关键还是在于使用工具的人

集中一点,登峰造极。

参考:
Morel P . Gramm: grammar of graphics plotting in Matlab.
Cobeldick S . MatPlotLib Perceptually Uniform Colormaps.

e14f50359ac96cfb0d15e7b39acb2d00.png

公号介绍

IEEE 论文那些事儿

解读期刊、会议最新动态

分享论文写作与发表经验

提供专业的论文写作辅导、英文润色服务

助你从SCI入门到顶刊顶会之路不再忧愁

交流、加群、投稿、润色、合作, 欢迎扫码加微信:

b4478c17627d431a98127db5e5822b09.png

学术科普✚●○

      关于学术出版的七件事

      EndNote X9常用方法汇总

      青年学者加入学术期刊编委会的益处

      学术界身份证——ORCID的原理、注册与使用

学术论文投稿你用什么邮箱,QQ邮箱可以吗?

从一条审稿意见,聊聊SCI论文的作者信息该怎么写

IEEE知识✚●○

IEEE会员制度科普

IEEE给您8条筹备学术会议的建议

最新IEEE期刊中科院分区结果出炉

如何从一个 EE 专业的学生成长为 IEEE Fellow

如何利用IEEE Xplore进行高效科研

集齐IEEE Letter、Journal、Transaction、Magazine、Proceeding, 召唤神龙

Access✚●○

IEEE Access那些事儿——自序

IEEE Access那些事儿——审稿流程

IEEE Access那些事儿——投稿技巧

IEEE Access那些事儿——催稿与重投

IEEE Access那些事儿——AE去哪儿

IEEE Access那些事儿——投稿过程实录(内含缴费细节)

IEEE Access的质量到底如何——亲历百篇文章后的经验之谈

中文期刊✚●○                                                     电子信息类中文权威期刊(SCI&EI)投稿攻略     计算机专业权威期刊投稿经验总结     计算机学科部分核心期刊投稿攻略   [New]EI收录的国内期刊大全NCS介绍✚●○                                                     《Science》投稿科普     《Nature》投稿指南   《Nature Electronics》介绍及投稿经验分享    [New] Nature Communications投稿科普投稿建议✚●○

    IEEE Trans那些事儿——交通学科Trans

    [New] 机器人与控制领域高水平期刊介绍

    [New] IEEE Trans. on Image Processing 投稿经验

    [New] IEEE Trans. on Neural Networks and Learning Systems简介

介绍一个中科院一区的IEEE期刊——速度快、因子高、容易中

******更多投稿建议,请移步知识星球******

往期好文✚●○

      SCI降重办法梳理

SCI投稿常用询问信

如何提升科研成果影响力

想吸引审稿人,你需要......

提升科研效率的几款小工具

学术会议 Poster==PPT?NO!

投稿前,给你的SCI论文做个体检

文章成长之道——一位优青的三步曲

如何精简SCI论文篇幅,达到指定字数?

《Science》发文:没时间写论文?这么办!

【同行评议】如何撰写审稿报告?

[New] 前沿介绍| 一个可以给你paper增加创新点的新方法

[New] 计算机学科期刊大全(揽括8大方向所有期刊)

[New] 评选院士、杰青、长江、千人等有多难?评选条件了解一下

公号动态✚●○

知识星球介绍——理工科SCI论文交流圈

知识星球介绍——IEEE Access那些事儿

知识星球“IEEE Access那些事儿”科研喜报

“IEEE AccessTrans那些事儿”内容生态全新发布

[New] 通知!第一批8个方向的论文微信群建立并开放入群

点“在看” 的读者天天中文章,年年中基金 ba201b7239f7d23d2eba36dc898c1606.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值