python 因果推断_微软因果推理框架DoWhy入门

本文介绍了微软的因果推理框架DoWhy,该框架旨在简化机器学习中的因果推理过程。DoWhy基于Python,提供了一种将问题建模为因果图的方法,统一了多种因果推理方法的接口,并自动测试假设的有效性。文章通过示例展示了如何使用DoWhy进行建模、识别、估计和反驳四个步骤来推断因果关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人类的大脑有一种非凡的能力,能将原因与特定的事件联系起来。从选举的结果到掉在地板上的物体,我们不断地把引起特定效果的一系列事件联系起来。神经心理学将这种认知能力称为因果推理。计算机科学和经济学研究一种特殊形式的因果推理,称为因果推理,主要研究两个观察变量之间的关系。多年来,机器学习产生了许多用于因果推理的方法,但它们在主流应用中大多难以使用。最近,微软研究院(Microsoft Research)开发了一个用于因果思维和分析的框架DoWhy。

因果推理的挑战不在于它是一门新的学科,而恰恰相反,而是当前的方法代表了因果推理的一个非常小而简单的版本。大多数试图将原因(如线性回归)联系起来的模型都依赖于对数据做出某种假设的经验分析。纯粹的因果推理依赖于反事实分析,而反事实分析更接近于人类如何做出决策。想象一个场景,你和家人一起去一个未知的目的地度假。假期前后,你都在纠结一些与事实相悖的问题:

假期里我们应该做什么?

我们会开心吗?

我们为什么会觉得开心?

之后我们会有什么感觉?

回答这些问题是因果推理的重点。与监督学习不同,因果推理依赖于对未观测量的估计。这通常被称为因果推理的“基本问题”,这意味着一个模型从来没有通过一个剩余的测试集得到一个纯粹客观的评估。这一挑战迫使因果推理对数据生成过程做出关键假设。用于因果推理的传统机器学习框架试图绕过“基本问题”,这给数据科学家和开发人员带来了非常令人沮丧的体验。

介绍Dowhy

微软的DoWhy是一个基于python的因果推理和分析库,它试图简化在机器学习应用程序中采用因果推理的过程。受到朱迪亚·珀尔的因果推理演算的启发,DoWhy在一个简单的编程模型下结合了几种因果推理方法,消除了传统方法的许多复杂性。与前人相比,DoWhy对因果推理模型的实现做出了三个关键贡献。

提出了一种将给定问题建模为因果图的原则方法,使所有假设都清晰可见。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值