1. 介绍
YOLO (You Only Look Once) 是一个用于目标检测的卷积神经网络模型,以其高精度、高速度和易用性著称。YOLO v5 是目前最流行的 YOLO 版本之一,而 YOLO v8 是 YOLO 的最新版本。
2. 原理详解
YOLO 系列模型的基本原理是将目标检测任务转化为图像的回归预测问题,主要步骤包括:
- 图像预处理: 将输入图像缩放到指定尺寸并归一化。
- 特征提取: 使用主干网络 (Backbone) 提取图像特征。
- 特征融合: 将不同尺度的特征进行融合,以获取更丰富的特征信息。
- 预测框生成: 使用预测头 (Head) 生成目标检测结果,包括预测框坐标、置信度和类别信息。
- 非极大值抑制 (NMS): 剔除冗余的预测框,保留最终的检测结果。
3. 应用场景解释
YOLO 系列模型可用于各种目标检测任务,例如:
- 通用目标检测: 检测图像中的各种物体,如人、车、动物等。
- 实时目标检测: 在视频流中实时检测物体,用于监控、安防等场景。
- 特定目标检测: 针对特定物体进行检测,例如行人检测、车辆检测等。
4. 算法实现
YOLO 系列模型的代码开源在 GitHub 上,您可以参考官方仓库进行了解和学习。
1. 模型加载
import torch
# 加载模型
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
# 将模型设置为推理模式
model.eval()
2. 图像预处理
import cv2
# 读取