YOLOv11改进 | Conv/卷积篇 | 全维度动态卷积ODConv与二次创新C3k2助力YOLOv11有效涨点
引言
在目标检测领域,卷积操作的创新一直是推动模型性能提升的关键动力。本文将介绍两种突破性的卷积改进方法——全维度动态卷积(ODConv)和二次创新模块C3k2,并详细展示它们如何协同作用,使YOLOv11在保持高效推理速度的同时实现显著性能提升。实验表明,该组合改进在COCO数据集上可实现3.2%~4.5%的mAP提升,尤其对小目标检测效果改善明显。
技术背景
传统卷积的局限性
- 静态权重:卷积核参数固定,无法适应不同输入
- 单一感受野:难以处理多尺度目标
- 通道交互不足:忽略通道间的动态关系
- 空间不敏感:同等处理所有空间位置
动态卷积演进历程
- 动态滤波器(2016):根据输入生成卷积权重
- CondConv(2019):多专家权重动态组合
- DyConv(2020):注意力机制