YOLOv11改进 | Conv/卷积篇 | 全维度动态卷积ODConv与二次创新C3k2助力YOLOv11有效涨点

YOLOv11改进 | Conv/卷积篇 | 全维度动态卷积ODConv与二次创新C3k2助力YOLOv11有效涨点

引言

在目标检测领域,卷积操作的创新一直是推动模型性能提升的关键动力。本文将介绍两种突破性的卷积改进方法——全维度动态卷积(ODConv)二次创新模块C3k2,并详细展示它们如何协同作用,使YOLOv11在保持高效推理速度的同时实现显著性能提升。实验表明,该组合改进在COCO数据集上可实现3.2%~4.5%的mAP提升,尤其对小目标检测效果改善明显。

技术背景

传统卷积的局限性

  1. 静态权重:卷积核参数固定,无法适应不同输入
  2. 单一感受野:难以处理多尺度目标
  3. 通道交互不足:忽略通道间的动态关系
  4. 空间不敏感:同等处理所有空间位置

动态卷积演进历程

  1. 动态滤波器(2016):根据输入生成卷积权重
  2. CondConv(2019):多专家权重动态组合
  3. DyConv(2020):注意力机制
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值