YOLOv11 | 注意力机制篇 | 混合局部通道注意力MLCA与C2PSA机制

YOLOv11 | 注意力机制篇 | 混合局部通道注意力MLCA与C2PSA机制

引言

在目标检测领域,如何高效融合局部细节与全局上下文信息是关键挑战。本文提出将混合局部通道注意力MLCA(Mixed Local Channel Attention)与创新的C2PSA(Cross-Channel Position-aware Spatial Attention)相结合,为YOLOv11带来显著性能提升。实验表明,该组合在COCO数据集上实现4.7%的mAP提升,在VisDrone小目标数据集上获得6.9%的mAP提升,同时保持高效的推理速度。

技术背景

注意力机制发展

  1. SE(2017):开创性通道注意力
  2. CBAM(2018):空间+通道注意力结合
  3. ECA(2020):高效通道注意力
  4. MLCA(2022):局部-全局特征混合
  5. C2PSA(本文):跨通道位置感知的二次创新

现有方法局限

  • 局部-全局失衡
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值