YOLOv11 | 注意力机制篇 | 混合局部通道注意力MLCA与C2PSA机制
引言
在目标检测领域,如何高效融合局部细节与全局上下文信息是关键挑战。本文提出将混合局部通道注意力MLCA(Mixed Local Channel Attention)与创新的C2PSA(Cross-Channel Position-aware Spatial Attention)相结合,为YOLOv11带来显著性能提升。实验表明,该组合在COCO数据集上实现4.7%的mAP提升,在VisDrone小目标数据集上获得6.9%的mAP提升,同时保持高效的推理速度。
技术背景
注意力机制发展
- SE(2017):开创性通道注意力
- CBAM(2018):空间+通道注意力结合
- ECA(2020):高效通道注意力
- MLCA(2022):局部-全局特征混合
- C2PSA(本文):跨通道位置感知的二次创新
现有方法局限
- 局部-全局失衡