YOLOv11改进 | SPD-Conv空间深度转换卷积改进YOLOv11(高效空间编码技术SPDConv)
介绍
SPD-Conv(Space-to-Depth Convolution)是一种创新的卷积操作改进方法,专门针对YOLO系列目标检测算法设计。本文将详细介绍如何在YOLOv11中集成SPD-Conv模块,以提升模型对小目标的检测能力并降低计算复杂度。SPD-Conv通过高效的空间编码技术,在不增加计算负担的情况下显著改善了特征提取能力。
引言
YOLO系列算法因其卓越的速度-精度平衡而成为目标检测领域的主流选择。然而,小目标检测始终是YOLO架构的挑战之一。SPD-Conv通过空间到深度的变换策略,有效保留了细粒度空间信息,同时避免了传统下采样方法导致的信息丢失问题。实验表明,在YOLOv11中集成SPD-Conv可使小目标检测AP提升3-5%,而计算成本仅增加约1%。
技术背景
YOLOv11基础架构
YOLOv11延续了YOLO系列的单阶段检测范式,主要包含:
- Backbone:CSPDarknet53变体
- Neck:PANet特征金字塔
- Head:解耦检测头