YOLOv11 SPD-Conv空间深度转换卷积改进YOLOv11(编码技术SPDConv)

YOLOv11改进 | SPD-Conv空间深度转换卷积改进YOLOv11(高效空间编码技术SPDConv)

介绍

SPD-Conv(Space-to-Depth Convolution)是一种创新的卷积操作改进方法,专门针对YOLO系列目标检测算法设计。本文将详细介绍如何在YOLOv11中集成SPD-Conv模块,以提升模型对小目标的检测能力并降低计算复杂度。SPD-Conv通过高效的空间编码技术,在不增加计算负担的情况下显著改善了特征提取能力。

引言

YOLO系列算法因其卓越的速度-精度平衡而成为目标检测领域的主流选择。然而,小目标检测始终是YOLO架构的挑战之一。SPD-Conv通过空间到深度的变换策略,有效保留了细粒度空间信息,同时避免了传统下采样方法导致的信息丢失问题。实验表明,在YOLOv11中集成SPD-Conv可使小目标检测AP提升3-5%,而计算成本仅增加约1%。

技术背景

YOLOv11基础架构

YOLOv11延续了YOLO系列的单阶段检测范式,主要包含:

  • Backbone:CSPDarknet53变体
  • Neck:PANet特征金字塔
  • Head:解耦检测头

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值