LeetCode刷题第六周——动态规划字符串问题

本文深入探讨了从目标和、零钱兑换到二叉树路径和等经典算法问题,解析了01背包问题、完全背包问题及二维背包问题的解决思路,展示了如何将复杂问题转化为熟悉的算法框架。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本周题目:

  1. 目标和
  2. 零钱兑换
  3. 零钱兑换2
  4. 一和零
  5. 二叉树中的最大路径和

目标和 —— 01背包问题

问题的难点在于问题的转化。

思路就是把整个集合看成两个子集,Q表示整个集合,P表示正数子集,N表示负数子集, T表示目标和,用S(X)S(X)表示集合的求和函数,集合中均为非负数,N集合是指选中这部分元素作为负数子集。
S ( P ) − S ( N ) = T S(P) - S(N) = T S(P)S(N)=T
S ( P ) − S ( N ) = T S(P)−S(N)=T S(P)S(N)=T
S ( P ) + S ( N ) + S ( P ) − S ( N ) = T + S ( P ) + S ( N ) S(P) + S(N) + S(P) - S(N) = T + S(P) + S(N) S(P)+S(N)+S(P)S(N)=T+S(P)+S(N)
S ( P ) + S ( N ) + S ( P ) − S ( N ) = T + S ( P ) + S ( N ) S(P)+S(N)+S(P)−S(N)=T+S(P)+S(N) S(P)+S(N)+S(P)S(N)=T+S(P)+S(N)
2 S ( P ) = S ( Q ) + T 2S(P) = S(Q) + T 2S(P)=S(Q)+T
2 S ( P ) = S ( Q ) + T 2S(P)=S(Q)+T 2S(P)=S(Q)+T
也就是:正数集的和的两倍 == 等于目标和 + 序列总和。接下来就是标准的01背包问题了。
作者:bao-bao-ke-guai-liao
链接:https://leetcode-cn.com/problems/target-sum/solution/c-dfshe-01bei-bao-by-bao-bao-ke-guai-liao/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

01背包问题详见我的博客

零钱兑换

有一种感想动态规划本质是不会受到循环嵌套的内外层循序影响的,原因在于,不论动态规划的过程是自上而下/自下而上还是自左上到右下等等,都可以通过先行后列扫描或者先列后行扫描,这个问题太明显的,我居然还在纠结于此。
此题不普通的背包问题不同在于==一般的背包问题dp[weight]的含义是小于等于weight的目标值是多少,而此题的不同就是等于weight的目标值是多少。==其实现的方案就是通过初始化是制造边界条件。使得求解dp[weigth]时排除小于weight的目标值。
具体代码如下:

    int coinChange(vector<int>& coins, int amount) {
        int length = coins.size();
        if(length == 0)
            return -1;
        vector<int> dp(amount+1, amount + 1);
        dp[0] = 0;
        sort(coins.begin(), coins.end());
        for(int coin = coins[0]; coin <= amount; ++coin){
            for(int i = 0; i < length; ++i){
                if(coins[i] <= coin){
                    dp[coin] = min(dp[coin], 1 + dp[coin - coins[i]]);
                }
            }
        }
        return dp[amount] > amount? -1 : dp[amount];
    }

零钱兑换2

典型的完全背包问题

    int change(int amount, vector<int>& coins) {
        int length = coins.size();
        if(length == 0){
            if(amount == 0)
                return 1;
            if(amount > 0)
                return 0;
        }
        vector<int> dp(amount+1,0);
        sort(coins.begin(), coins.end());
        dp[0] = 1;
        //dp[coins[0]] = 1;
        for(int i = 0; i < length; ++i){
            for(int weight = coins[i]; weight < amount+1; ++weight){
                dp[weight] += dp[weight-coins[i]];
            }
        }
        return dp[amount];
    }

一和零

标准的二维背包问题。核心代码如下:

    int findMaxForm(vector<string>& strs, int m, int n) {
        int length = strs.size();
        if(length == 0)
            return 0;
        vector<vector<int>> dp(m+1, vector<int>(n+1, 0));
        for(int k = 0; k < length; ++k){
            int num_1 = 0, num_0 = 0;
            for(int x = 0; x < strs[k].size(); ++x){
                if(strs[k][x] == '0')
                    ++num_0;
                else
                    ++num_1;
            }          
            for(int i = m; i >= num_0; --i){
                for(int j = n; j >= num_1; --j){
                    dp[i][j] = max(dp[i][j], 1+ dp[i-num_0][j-num_1]);
                }
            }
        }
        return dp[m][n];
    }

二叉树中的最大路径和

使用回溯法计算,递归计算每一个节点的左右分支的最路径,然后求出以当前节点为根节点的最大路径和,直至求出根节点的最大路径和。

class Solution {
    private:
        int maxSum;

        int getMaxPath(TreeNode* node)
        {
            if(node == NULL)
                return 0;
            int leftNode = max(getMaxPath(node->left),0);
            int rightNode = max(getMaxPath(node->right),0);
            maxSum = max(maxSum, node->val + leftNode + rightNode);
            return node->val + max(leftNode,rightNode);

        }
public:
    int maxPathSum(TreeNode* root) {   
        maxSum =    INT_MIN;
        getMaxPath(root);
        return maxSum;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值