svd奇异值分解_NCL专辑 | 奇异值分解(SVD)

本文详细介绍NCL中用于气象数据分析的奇异值分解(SVD)方法,涉及svd_lapack、svdcov等函数的使用,以及它们在场间关系理解中的作用。通过实例演示了如何计算矩阵奇异值分解并解读结果,适用于数据处理、机器学习和可视化专业人士。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

c790a8ba7a87b148c57a6deb874e9d58.png

奇异值分解SVD(Singular Value Decomposition)是一种矩阵分解方法,在气象领域中常用来分析两个气象场场之间的关系。

NCL的函数库中与SVD相关的函数包括svd_lapack,svdcov,svdcov_sv,svdstd,svdstd_sv。

svd_lapack:用于计算一般矩形矩阵的奇异值分解。具体写法为:

s   = svd_lapack (a, "S" , "S", 0,  u, v)

这里,a是一个(/nca,nra/)矩阵,两个“S”为固定写法,0表示输出v时不转置(1则表示转置v),u和v分别为左、右奇异向量,u的长度和属性都和a相同,而v的长度为(/nca,nca/),属性也与a相同。

svdcov:对两个场进行奇异值分解,并返回与这两个场相关的左右同构和异构数组。具体写法为:

svd_rv = svdcov(s,z,nsvd,homlft,hetlft,homrgt,hetrgt)

这里,s为(/ncols,ntime/)的气象场,z为(/ncolz,ntime/), 二者都为float或者double。nsvd为计算的svd模态数。homlft,hetlft,homrgt,hetrgt分别为左同构场、左异构场、右同构场合右异构场。它们的属性如下:

  homlft:(/nsvd,ncols/),typeof(s)
  hetlft:(/nsvd,ncols/),typeof(s)
  homrgt:((/nsvd,ncolz/),typeof(s)
  hetrgt:((/nsvd,ncolz/),typeof(s)

时间系数为:

  ak   = onedtond(svd_rv@ak,(/nsvd,ntime/))
bk = onedtond(svd_rv@bk,(/nsvd,ntime/))
  ak!0 = "sv"
  ak!1 = "time"
  bk!0 = "sv"
  bk!1 = "time"

svdcov_sv:该命令与svdcov的区别在于,它只返回两个输入数据集相关联的左右奇异向量。

svdstd、svdstd_sv:它们与svdcov、svdcov_sv的区别在于,它们首先对输入的数组进行了标准化处理,然后再进行SVD计算,而svdcov、svdcov_sv不会对输入的数据进行标准化处理。

cddfc4c93f1b61f757e221dfde0460eb.png

数据处理·机器学习·可视化

行业资讯·学习资料

765999d51620699c0a86f3e32221cc02.png

长按关注不迷路

55c23ef9c13397e25af4ce75a800bddd.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值