这篇文章是发表在CVPR 2017上的一篇关于对点云数据进行分类与分割的文章,文章链接:PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
1. Background
大数据时代下3D数据的日益增多,急需一套有效的针对3D数据的深度学习网络来进行分类、分割等任务。点云是一种简洁的、最接近原始传感器数据的结构,在深度学习之前,大多数针对点云数据的特征提取都是手工构造的方法,例如PFH、VFH、RIFT等,这类方法不够高效,对信息的利用率不够高。
但是深度学习模型一般针对是具有规则结构的栅栏型数据如语音、图像,如下图(a),但是点云数据,如图(b)(c)是2D点云数据,是不规则的且无序的。如果网络要处理这样的数据并进行分类,那就要满足两个条件:(1)改变输入点的顺序不会改变最终预测结果,即Invariant to permutation;(2)相同种类的不同点云样本,可能通过不同的采样方式进行采样,使得它们虽然具有相同的结构,却在不同的参考坐标系下,网络需要对这种点云结构的移动、旋转、缩放具有不变性,即Invariance to geometric transformations。
2. Related Work
在此之前,针对点云的处理方法有(1)手工构造