r语言做绘制精美pcoa图_PCOA分析

PCoA是一种非约束性的数据降维方法,用于研究样本的相似性或差异性。不同于基于欧氏距离的PCA,PCoA基于其他距离度量。本文介绍了如何使用R语言进行PCoA分析,包括输入样本距离矩阵和可选的样品分组信息,以及输出的PCoA结果文件和绘图。通过PCoA分析图,可以直观地理解样本间的关系,尤其是在提供分组信息时,不同颜色的点代表不同分组的样品,有助于解析影响因素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PCoA分析,即主坐标分析(principal co-ordinates analysis),也是一种非约束性的数据降维分析方法,可用来研究样本的相似性或差异性,与PCA分析类似;主要区别在于,PCA基于欧氏距离,PCoA基于除欧氏距离以外的其它距离。PCoA分析,首先对一系列的特征值和特征向量进行排序,然后选择排在前几位的最主要特征值,并将其表现在坐标系里,结果相当于是距离矩阵的一个旋转,它没有改变样本点之间的相互位置关系,只是改变了坐标系统。

输入:

1、样本距离矩阵文件,可由分析模块“Generate distance matrix from fpkm matrix”生成。

示例:

T4    T5    T6    T7    T8    T9

T4    0       556.755292869315 548.144810678248 1840.00551404162 4595.29924214683 1500.48982692357

T5    556.755292869315 0       608.699577853257 1817.04805740656 4504.26458143164 1526.05178655135

T6    548.144810678248 608.699577853257 0       1768.22280076409 4633.56038886132 1354.17671707347

T7    1840.00551404162 1817.04805740656 1768.22280076409 0       3697.34366245185 1251.5445135536

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值