PCoA分析,即主坐标分析(principal co-ordinates analysis),也是一种非约束性的数据降维分析方法,可用来研究样本的相似性或差异性,与PCA分析类似;主要区别在于,PCA基于欧氏距离,PCoA基于除欧氏距离以外的其它距离。PCoA分析,首先对一系列的特征值和特征向量进行排序,然后选择排在前几位的最主要特征值,并将其表现在坐标系里,结果相当于是距离矩阵的一个旋转,它没有改变样本点之间的相互位置关系,只是改变了坐标系统。
输入:
1、样本距离矩阵文件,可由分析模块“Generate distance matrix from fpkm matrix”生成。
示例:
T4 T5 T6 T7 T8 T9
T4 0 556.755292869315 548.144810678248 1840.00551404162 4595.29924214683 1500.48982692357
T5 556.755292869315 0 608.699577853257 1817.04805740656 4504.26458143164 1526.05178655135
T6 548.144810678248 608.699577853257 0 1768.22280076409 4633.56038886132 1354.17671707347
T7 1840.00551404162 1817.04805740656 1768.22280076409 0 3697.34366245185 1251.5445135536
<