论文解读|单训练样本/少训练样本用于人脸识别

本文探讨了在法律实施、护照验证等场景下,因每人仅有少量图像可用而产生的单训练样本人脸识别技术。文章回顾了早期研究,包括虚拟样本、样本扩充等方法,并指出这些方法虽在当时有效,但相较于现代的多样本训练,在准确率上存在显著差距。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇将会汇总我读的几个论文,来进行阐述。这些鲁汶都是0几年的,说实在的,效果真没有多样本训练效果好。

在一些特殊的场合,比如法律实施、护照验证、身份证验证等,每类(人)只能得到一幅图像,只能用这些数目有限的图像去训练人脸识别系统,因而产生了单训练样本人脸识别技术.单训练样本人脸识别,是指每人仅存储一幅人脸图像作为训练集去识别姿态、光照等可能存在变化的人脸图像的身份‘。
解决方法有虚拟样本,样本扩充,人脸验证而不是识别。说实话 这篇论文太老了,准确率很低,其方法现在看来并不可行,但是在当年应该是不错的方法。

 

未完

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

颐水风华

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值