学习记录-自动驾驶与机器人中的SLAM技术

以下所有内容均为高翔大神所注的《自动驾驶与机器人中的SLAM技术》中的内容

2D SLAM

  • 作者实现了一个2D 的ICP,包含了点到线的处理方式
  • 实现了一个似然场法的配准,介绍了相关公式,使用了高斯牛顿法和g2o进行求解,其中g2o中有对核函数的使用

3D SLAM

ICP

  • 实现了一个并发的ICP配准
  • 实现了点到面的ICP
  • 实现了点到线的ICP
  • 点到线的ICP的结果与点到点的ICP相当,略差于点到面的、在三中算法中,点到面的ICP在精度和效率上都具有一定优势,明显快于PCL的内置版本,单其单次迭代中计算量明显大于原始ICP

NDT

本书各配准算法与PCL的对比

增量式NDT

需要解决两个问题:

  1. 每个体素内的高斯参数如何改变
  2. 如何维护不断增加的体素

高斯分布的增量更新

体素的增量维护

融合导航

1. EKF和优化的关系

2. 组合导航eskf中的预测部分,主要是F矩阵的构建

t
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值