以下所有内容均为高翔大神所注的《自动驾驶与机器人中的SLAM技术》中的内容
2D SLAM
- 作者实现了一个2D 的ICP,包含了点到线的处理方式
- 实现了一个似然场法的配准,介绍了相关公式,使用了高斯牛顿法和g2o进行求解,其中g2o中有对核函数的使用
3D SLAM
ICP
- 实现了一个并发的ICP配准
- 实现了点到面的ICP
- 实现了点到线的ICP
- 点到线的ICP的结果与点到点的ICP相当,略差于点到面的、在三中算法中,点到面的ICP在精度和效率上都具有一定优势,明显快于PCL的内置版本,单其单次迭代中计算量明显大于原始ICP
NDT
本书各配准算法与PCL的对比
增量式NDT
需要解决两个问题:
- 每个体素内的高斯参数如何改变
- 如何维护不断增加的体素
高斯分布的增量更新
体素的增量维护
融合导航
1. EKF和优化的关系
2. 组合导航eskf中的预测部分,主要是F矩阵的构建
t