python实验环境怎么写_构建一个可复用的Python实验环境(1)

本文介绍了如何构建一个可复用的Python实验环境框架,包括dataset、model、metric和setting四个基类,使得在项目中添加新数据集、模型或评估指标时能保持代码的低耦合。整体结构包括explib、datasets、models、metrics、settings目录,以及base.py和utils.py文件。文章还展示了各基类的定义,并提出实验设置类应包含多个评估方法的列表。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

webchat.jpg

毕竟是野路子出身,以前跑实验,总是每一个模型都有一套完整的代码,从读数据,跑模型,算得分,写代码的过程中也是大量复制粘贴,因为读数据和算得分的代码通常都是通用的。

这次访学,师兄拷给我一份实验环境的代码,看后惊叹原来代码要这样写,耦合解得非常好。但我这种强迫症总是觉得别人写的不漂亮,自己照着重写了一遍,结果并没能领悟其精髓,结果最后跑实验的时候各种出问题。项目好不容易结束,决定认认真真分析一下代码,再重新写一遍。代码在github上同步更新。

目标

我们的目标是写一个可复用的实验环境框架,这样拿到一个新的项目,只要对应的填入一些函数、类,就可以使用了。

那么这个实验环境要有怎样的特性呢?我们希望,在项目进行过程中,如果要添加一个数据集、模型、或是评估指标,只要简单的加入对应的文件就好,而不去影响其他代代码。

这样的一个环境搭好之后,就可以把它当成一个库来使用,编写额外的代码来调用其中的函数。

整体结构

通常来说,一个完整的实验的流程是读取数据、用模型计算结果、对结果进行评估(打分),那么至少就要有三个基类:dataset,model,metric。此外,我们可能有不同的实验设置,例如80%拿来训练模型,20%作为测试集,这样还需要一个基类setting。最后我们再用一个profile类来把这些东西组装起来就好了。整体的结构就可以这样写:

+explib

|-- +datasets

|-- +models

|-- +metrics

|-- +settings

|-- __init__.py

|-- base.py

|-- utils.py

我们将基类都定义在base.py中,utils.py放一些常用的小函数,例如io操作等。模型等具体实现写在对应的文件夹下。

基类定义

首先定义整个实验环境的基类,其实没有也可以,这样写更一致一点。</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值