matlab无人机影像图像拼接代码,无人机航拍图像拼接研究与实现.doc

本文介绍了无人机航拍图像拼接的研究与实现,重点探讨了使用Harris算法进行特征点提取,并对其进行了改进,以适应不同图像的自适应阈值设置。接着,通过归一化互相关函数进行特征点匹配,提升拼接精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

无人机航拍图像拼接研究与实现

无人机航拍图像拼接研究与实现

[摘 要]针对无人机航拍图像的特点,采用基于图像特征的拼接技术,实现了无人机航拍图像的无缝拼接。

[关键词]无人机;图像拼接

中图分类号:TP391.41 文献标识码:A 文章编号:1009-914X(2017)08-0182-02

1 图像拼接的原理与实现过程

1.1 特征点提取

1.1.1 常用的特征点提取算法比较

目前,应用比较广泛的特征点提取算法有Moravec、Harris、SUSAN、SURF、SIFT等算法。从图像拼接的应用中比较了Harris和SIFT算法。SIFT算法具有良好的尺度和旋转不变性,但是算法复杂运算速度慢;而Harris算法运算速度快且在旋转图像的拼接上效果更好。由于Harris算法计算简单、稳定性高、具有很好的鲁棒性,即使图像存在旋转、亮度变化和干扰噪声,也能精确检测出图像中的特征点,因此本文采用Harris算法提取待拼接?D像的特征点。

1.1.2 Harris算法的原理

Harris特征点检测算法是C.Harris和M.Stephens在Moravec算法的基础上,提出的一种经典的基于信号的特征点提取算法。Harris算法的原理是在图像中的一个小的观察窗口内,在特征点处窗口沿任意方向移动微小的距离都会观察到图像灰度值的剧烈变化。定义窗口内灰度值的变化量:

(1)

式中w(x,y)为窗口函数。为了较好地抑制噪声,窗口函数选用高斯函数:

(2)

对式(1)用泰勒级数展开,取一阶近似可得:

(3)

式中,

(4)

分别为图像在x和y方向上的一阶偏导数:

(5)

(6)

令:

(7)

(8)

设λ1、λ2分别是矩阵M的两个特征值,根据和的值可以判断观察窗口内灰度变化量E的变化情况,可以分为以下三种情况:(1)λ1和λ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值