

自动化立体仓库最早起源于第二次世界大战之后, 美国最初开始研究建设一种桥式堆垛起重机. 随着世 界经济的发展, 经历了巷道式堆垛起重机立体仓库, 自 动化立体高架仓库等阶段. 自动化立体仓库又称自动 存取系统、智能仓储. 它集成了运输机、高层货架、 巷道堆垛机、仓库控制系统和仓库管理系统等多个部 分. 国内外早期大部分的研究围绕在自动化的设计、 控制等领域, 对自动化立体仓库中应用的关键硬件和 相关技术的研究, 如基于 C/S、B/S 架构的计算机信息 管理系统[1] , 如控制系统设计中可编程逻辑控制器 PLC (Programmable Logic Controller) 的运用[2] , 随着世界经 济快速发展, 客户对仓储技术提出了更高的需求, 原有 的静态技术不符合新时代市场的需求, 自动化立体仓 库的研究开始与数据和智能相结合, 向开发新模型、 新算法的方向发展. 如采用改进遗传算法, 模拟退火算 法, 蚁群算法等对 AGV (Automated Guided Vehicle, 自动导向小车) 路径进行规划研究, 使得 AGV 选择更 高效的路径[3] . 文献 [4] 从效率或故障率方面入手研究, 对货位动态分配进行建模, 对环形轨道穿梭车调度问 题提出了一种基于规则的遗传算法,达到了优化调度结 果、提高运算效率的目的. 文献 [5] 对堆垛机故障风险 的存储策略和模型进行了研究, 以 x 卷烟物流配送中 心仓库系统为研究对象, 引入了一种将同种烟卷分散 存储到不同巷道中的存储策略, 从而降低巷道式堆垛 机可能引发的故障问题. 本文以实验室具体项目为背景, 阐述了该系统的 整体系统结构、各子系统结构和功能及主要部分的设 计. 不同于大多数研究关注于调度优化或存储策略角 度, 本文将 Apriori 算法应用于出入库数据挖掘, 找出 故障率与仓库出入库物料之间的联系, 在保证仓库库 存的情况下, 提出更科学的进出入库指导性建议, 以期 获得更低的设备故障率, 最大化企业收益率.
1 Apriori 算法概述
Apriori 是一种关联规则算法, 从已有的数据集中 挖掘有关联关系的数据项, 企业可以参考这些关联数 据集制定决策. Apriori 算法在大数据集上以连接的方 式产生候选项, 并同步计算出支持度, 通过剪枝得到关 联度高的频繁项集.
1.1 频繁项集标准
频繁项集有 3 个标准: 支持度, 置信度和提升度.
支持度: 有关联关系的数据出现的次数与总数据 数量的比, 即事件同时出现的概率. 假设存在数据 X, Y, 则对应的支持度为:
举例说明: 存在一组数据, 出库 X 物料对故障的置 信度为 30%, 支持度为 2%. 则意味着在出库数据中总 共有 2% 的数据记录满足出库 X 物料时发生故障; 发 生故障的记录中, 有 30% 是因为出库 X 物料. 提升度: 在事件 Y 发生的条件下, 发生事件 X 的概 率, 与事件 X 发生的概率的比值.
提升度体现事件间的关联关系, 当提升度大于 1 时表示事件之间具有强关联关系. 当 X 和 Y 独立时, 提 升度 Lift(X<=Y)=1, 有 P(X|Y)=P(X).
1.2 Apriori 算法思想
Apriori 算法旨在找出最大的 k 项存在关联关系的 频繁集. 以支持度作为标准. 通过迭代, 先找出候选 1 项集和它的支持度, 剪枝去掉不符合要求的候选 1 项 集, 得到频繁 1 项集. 对新的频繁 1 项集进行连接, 得 到候选 2 项集, 继续剪枝得到频繁 2 项集. 循环迭代直 到找到频繁 k+1 项集. 最后的频繁 k 项集即是最后结 果. 假设事务集数据库 M 详细内容如图 1 所示, 最小 支持度为 50%, 则计算过程如图 2 所示.
2 系统框架
本系统基于 Microsoft.Net 平台, 采用面向对象语 言程序设计, 在 IBatics.Net 标准框架的基础上进行了 重构和扩展, 采用客户端/服务器端结构, 利用 WPF (Windows Presentation Foundation, 基于 Windows 的用 户界面框架) 技术实现客户端与服务端的信息交互, 保 证信息传递的安全、稳定和效率; 采用关联规则数据 挖掘 Apriori 算法, 对出库信息进行挖掘, 提供科学的出 入库生产建议; 同时根据企业定制化需求能够与移动设 备、射频识别 RFID (Radio Frequency IDentification)[6,7]、 电子标签、自动导航小车 AGV、条码等其他先进的 设备集成, 实现更加人性化、可视化的操作平台. 总体 框架如图 3 所示.
结合图 3、图 4, 系统中码垛机器人负责抓取滚筒 传送带上指定位的箱 (产品货物) 放置到托盘上, 由堆 垛机负责搬运托盘及产品放置于指定货架上. 服务器 端集成了信息管理系统和监控调度系统, 在监控调度 界面实时显示当前堆垛机运行位置 (图形化展示), 运 行故障以及设备故障等情况 (表格化展示), 配备打印机以打印相关信息. 手持终端系统作为客户端, 与服务 器端信息管理系统对接, 支持 RFID、条码标签. 采用 Web service 调用方式[8,9] , 大量的复杂的业务处理都由 服务器端远程完成. 满足了物料传输系统实时信息相 应的要求. 操作界面设计简洁明确, 操作方便; 对无线 网络终端的连接实施有效管理, 提高系统的安全性.
3 系统模块及业务描述
服务器端集成信息管理系统, 监控调度系统以及 数据挖掘模块. 主要实现基础信息维护, 可视化的实时 监控调度界面, 以及表格化展示的业务状态, 设备状态, 是否故障等. 客户端部署在手持终端上, 负责数据采集, 进出入库、盘点等主要业务指令发布.
3.1 信息管理系统
信息管理系统包括的功能如图 5 所示. 实现基础 信息维护, 储位管理, 托盘管理, 编码管理, 查询统计等 功能[10,11] . 库房业务界面在手持终端实现, 相关逻辑业 务由手持终端传递数据到服务器端后台完成.
基础信息管理: 包括用户管理、角色管理、权限管理、部门设置以及计量单位、包装关系设置等功能.
储位管理: 包括库房、库区、库位、库型存储内 容、出入库作业形式以及储存规则等的设置.
托盘管理: 实现库存用托盘及货品承载物的标签 管理, 托盘信息导入, 托盘的使用和回收管理.
编码管理: 包括公司部门等组织编码, 人员编码,物 料编码, 设备编码等.
查询统计: 支持订单号查询, 箱码查询, 执行业务 查询, 业务数据查询, 产品信息追溯等功能.
3.2 监控调度系统
主要包括侧视图和俯视图. 以可视化二维平面模 型实时显示. 以及相关的作业调度执行单, 设备故障显 示等. 如图 6 所示. 信息管理系统 基础
图 6 中, 左上部分为俯视图, 右上为侧视图. 其中 小车代表搬运物料的堆垛机, 橙色箱子表示立体架. 左 下和右下部分分别是作业调度执行模块和设备故障情 况模块, 实时显示当前执行的进出库作业和故障情况 等. 若系统正常运行, 则设备故障情况模块不显示任何故障.
3.3 手持终端部分
手持终端包括账号管理, 零头入库, 托盘入库, 查 询, 调配单等模块, 结构功能图如图 7 所示. 账号管理: 拥有手持终端上的账号登陆, 角色管理, 异常处理等功能. 零头入库: 手持终端通过扫描箱码和托盘标签 码,实现一对多的绑定关系后, 将数据传输给服务器端, 服务器端再传递给监控调度系统并更新数据库数据. 托盘入库: 通过扫描托盘标签进行托盘入库业务. 查询: 可在主界面扫码查询, 包括箱码和托盘标签 码, 也可在单独的查询界面通过输入指定的订单号查 询指定调配单. 调配单: 所有的出库作业及查询盘点作业均以调 配单为基础单位.
3.4 数据挖掘模块
企业生产产品时, 往往需要同时启动多条产品线, 同时生产多种不同类的产品, 由于市场需求随时可能 发生变化, 根据当前订单和往期销售记录等预估下一 步生产计划, 适当保持当前仓库库存很有必要. 本模块通过调用 R 语言中的 arulesViz 包实现 Apriori 算法, 以出库记录为主要研究对象, 以期找出出库对象和故 障之间的联系, 包括库存不足, 设备损坏和其他故障.
4 结论与展望
该系统已在 D 公司正式运转, 取代了传统老式人 工纸笔记录及人力搬运物料的作业形式. 采用无线扫 描技术, 信息化管理, 自动化出入库作业后, 大大减少 仓库物流环节所需的人力成本, 提高了查询盘点录入 相关的效率、准确率. 进一步减小了人工操作可能存 在的潜在隐患. 其特有的关联数据挖掘模块, 经实际运 行挖掘分析后, 采取对应措施, 有效降低了系统整体故 障率 (包括库存不足等故障), 具有十分可观的市场应用. 交付试运行期间, 存在一些局部故障, 需要断开系 统, 由人工进行干预, 系统整体稳定性有待进一步提升. 本系统在传统人工仓储管理的模式上, 极大精简了人 力, 提升了管理与作业的效率, 但尚达不到全系统自动 化, 处处需要人工参与监督, 在这方面有待进一步提升.
本文转载《计算机系统应用》期刊 2020年第29卷第9期

关注我们公众号,还可以获得PS AI等工具包哦~