本文你将学习到:
1.DFS解题技巧 2.动态规划解题思路
经典例题:城市网络最小费用
如图为城市之间的交通网络图,线段上的数字表示费用。求城市V1到V10的最少费用。
方法一:万能搜索方法(dfs)
从起点V1可以进行深度优先搜索,从V1可以沿V2,V3,V4点进行dfs,v2继而可以分别沿v5以及v6两个方向进行深搜,所以,我们可以这样递归函数:
void dfs(int x,int cur) //表示从起点到点x进行深搜,得到的路径为cur
所以,dfs的核心代码如下:
void dfs(int x,int cur)
{
if(x==n) //边界条件
{
if(ans>cur) ans=cur;
return;
}
for(int i=x+1;i<=n;i++)
{
if(a[x][i]!=0 && v[i]==0)
{
v[i]=1;
dfs(i,cur+a[x][i]);
v[i]=0;
}
}
}
该题完整的代码如下:
#include
#include
#include
using namespace std;
int a[100][100];
int v[100];
int n,ans=99999;
void dfs(int x,int cur)
{
if(x==n) //边界条件
{
if(ans>cur) ans=cur;
return;
}
for(int i=x+1;i<=n;i++)
{
if(a[x][i]!=0 && v[i]==0)
{
v[i]=1;
dfs(i,cur+a[x][i]);
v[i]=0;
}
}
}
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
cin>>a[i][j];
v[1]=1;
dfs(1,0);
cout< return 0;
}
缺点:该题采用dfs搜索算法很容易可以给出答案,但是对于n较大的数,显然会超时,因为dfs的时间复杂度为指数级,下列采取动态规划来解决此题。
方法二:动态规划,逆推法
1.确定状态
设f[i]表示点i到v10的最短路径长度
那么,最终答案就是f[1];
2.状态转移方程
f[i] = min{ a[i][x]+f[x] }; 当a[i][x]>0,i边界条件:f[n]=0
3.满足最优子结构
明显,答案最终的最优解是由子问题的最优解推到而来,所以,符合最优子结构性质。
4.无后效性
一旦某个状态f[x]确定,那么在之后的状态只需要调用它的值就可以了,而不用关心它是怎样来的,所以符合无后效性。
代码实现如下:
#include
#include
#include
using namespace std;
int a[100][100];
int f[100];
int c[100];
int n;
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
cin>>a[i][j];
for(int i=1;i<=n;i++)
f[i]=99999;
f[n]=0;
for(int i=n-1;i>=1;i--)
for(int j=i+1;j<=n;j++)
{
if(a[i][j]>0 && f[j]!=99999)
{
f[i]=min(f[i],a[i][j]+f[j]);
}
}
cout< return 0;
}