tensorflow遥感图像分类_3.1土地遥感

本文介绍了遥感图像分类技术,重点探讨了基于Tensorflow的自动更新方法,包括基于对象和GIS的策略,强调了数据、算法层面的改进,以及不确定性分析与精度评价的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

6ee0e7d84b52f99dc022505e75f43336.png

章节概览

d02421b7fe5d2a3dc6309732f13b243c.png

土地是人类生存的基础。遥感对土地的宏观研究主要包括土地覆盖(land cover)、土地利用(land use)、土地资源评价(land resource assessment)以及土地退化动态监测(land degradation monitoring)等。

随着计算机硬件的性能提升和算法的逐步优化,遥感领域也大量引入自动化方式来代替传统的人力消耗的方法。本章主要针对土地遥感最常用的土地利用/覆盖及自动更新技术来介绍技术的特点和算法的思路。

关注上图,首先我们关注土地遥感的技术概况,介绍一些重要的概念;之后针对自动更新技术所必须的分类特点进行介绍;之后的两个部分介绍两种典型方法,分别是基于对象的自动更新技术以及基于GIS的自动更新技术;最后是不确定性分析以及精度评价(没有精度评价的反演是不完整的)。


一、技术概况

概览部分提到了土地遥感的几个宏观的研究方向,其中需要特别注意以及避免混淆的两个概念是土地利用和土地覆盖。

  • 土地利用(land use):是建立在自然资源基础上的社会和经济的统一体,是在土地资源基础上进行的与土地直接相关的生产和生活活动。
  • 土地覆盖(land cover):覆盖在地球表层的植被和其他特征。
  • <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值