nodejs+html转换pdf,Nodejs中使用phantom将html转为pdf或图片格式的方法

该博客对比了三种将HTML转换为PDF的方法:html-pdf、wkhtmltopdf和phantom。html-pdf不支持样式渲染和图片加载,但支持分页;wkhtmltopdf在样式和图片支持上表现更好,但安装复杂;而phantom基于无头浏览器,能设置PDF宽度,适合复杂的HTML布局。最终,作者选择了phantom模块,因为它能更好地保留HTML样式并支持自定义PDF尺寸。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在项目中遇到需要把html页面转换为pdf的需求,并且转换成的pdf文件要保留原有html的样式和图片。也就是说,html页面的图片、表格、样式等都需要完整的保存下来。

最初找到三种方法来实现这个需求,这三种方法都只是粗浅的看了使用方法,从而找出适合这个需求的方案:

html-pdf 模块

wkhtmltopdf 工具

phantom 模块

最终使用了phantom模块,也达到了预期效果。现在简单的记录三种方式的使用方法,以及三者之间主要的不同之处。

1.html-pdf

github:https://github.com/marcbachmann/node-html-pdf

npm:https://www.npmjs.com/package/html-pdf

安装:

npm install -g html-pdf

使用命令行:

html-pdf /test/index.html index.pdf

这样便可以把index.html页面转换为对应的index.pdf文件。

使用代码:

var express = require('express');

var router = express.Router();

var pdf = require('html-pdf');

router.get('/url',function(req,res){

res.render('html',function(err,html){

html2Pdf(html,'html.pdf');

//........

});

});

/**

* 这种方法没有渲染样式和图片

* @param url

* @param pdfName

*/

exports.html2Pdf = function(html,pdfName){

var options = {format:true};

pdf.create(html,options).toFile(__dirname+'/'+pdfName,function(err,res){

if (err) return console.log(err);

console.log(res);

});

};

在测试过程中发现,生成的pdf文件中并没有支持样式渲染和图片加载,不能支持通过url直接加载html;但是在分页的支持上很好。

结果如下:

80f2c3ea99fe78b0cd957029723a3c06.png

2、wkhtmltopdf

github:https://github.com/wkhtmltopdf/wkhtmltopdf

官方文档:https://wkhtmltopdf.org

npm:https://www.npmjs.com/package/wkhtmltopdf

wkhtmltopdf在效果上比较html-pdf要好很多,它支持样式渲染,图片加载,还可以通过url直接生成PDF文件。

但是安装上要麻烦得多。具体安装步骤参考这里

安装完毕之后,使用命令行:

wkhtmltopdf https://github.com github.pdf

即可生成对应的PDF文件。

代码使用:

var wkhtmltopdf = require('wkhtmltopdf');

var fs = require('fs');

// URL 使用URL生成对应的PDF

wkhtmltopdf('http://github.com', { pageSize: 'letter' })

.pipe(fs.createWriteStream('out.pdf'));

除了可以通过URL生成之外,还能通过HTML文件内容生成,就像HTML-PDF一样,只要有HTML格式的字符串就可以生成相应的PDF。

结果如下:

0071aa5c87a724c56be104b9b9049823.png

3、phantom 模块

github:https://github.com/amir20/phantomjs-node

官方文档:http://amirraminfar.com/phantomjs-node/

npm:https://www.npmjs.com/package/phantom

phantomjs是基于webkit的无头浏览器,提供相关的JavaScript API,nodejs就相当于对phantomjs的模块化封装,使得它能够在nodejs中使用。

模块安装:

node版本6.X以上的:

npm install phantom –save

node版本5.X的:

npm install phantom@3 –save

node版本4.X及以下的:

npm install phantom@2 –save

以下的例子都是基于node 4.x

代码使用:

var phantom = require('phantom');

phantom.create().then(function(ph) {

ph.createPage().then(function(page) {

page.open("https://www.oracle.com/index.html").then(function(status) {

page.property('viewportSize',{width: 10000, height: 500});

page.render('/oracle10000.pdf').then(function(){

console.log('Page rendered');

ph.exit();

});

});

});

});

代码中,phantom能够通过URL转换为相应的PDF,而且能够通过 page.property('viewportSize',{width:width,height:height}) 来设置生成的PDF的宽度和高度。

此例phantom中并没有分页,它是以整个浏览器截图的形式,获取全文,转化为PDF格式。

选择phantom的主要原因就是便于设置PDF的宽度,更能兼容HTML的排版。

结果如下:

bfa4e008e69c03c1dd892405bed9e1f8.png

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值